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RESUME

Les applications pour appareils mobiles jouent, de nos jours, un role important dans nos vies.
Méme si la consommation énergétique affecte la durée de vie de la batterie des appareils
mobiles et limite 1'utilisation des appareils, nous les utilisons presque partout, tout le temps

et pour presque tout.

Avec la croissance exponentielle du marché des applications pour appareils mobiles, les
développeurs ont été témoins d'un changement radical dans le paysage du développement
du logiciel. Les applications mobiles présentent de nouveaux défis dans la conception et
I'implantation logicielle dus aux contraintes des ressources internes (tel que la batterie, le
CPU et la mémoire) et externes (I'utilisation de donnés). Donc, les exigences traditionnelles
non-fonctionnelles, tels que la fonctionnalité et la maintenabilité, ont été éclipsées par la

performance.

Les chercheurs étudient activement le role des pratiques de codage sur la consommation
énergétique. Cependant, le CPU, la mémoire et les utilisations du réseau sont aussi des
mesures importantes pour la performance. Méme si le matériel informatique des appareils
mobiles s’est beaucoup amélioré dans les derniéres années, des nouveaux utilisateurs arrivent,
possedant des appareils bas de gamme avec acces limité aux données. Les développeurs
doivent donc gérer les ressources attentivement car les nouveaux marchés possedent une part
importante des nouveaux utilisateurs qui se connectent en ligne pour la premiere fois. La

performance des applications pour les appareils mobiles est donc un sujet tres important.

Des études récentes suggerent que les ingénieurs logiciels peuvent aider a réduire la con-
sommation énergétique en tenant compte des impacts de leurs décisions de conception et
d’implantation sur I’énergie. Mais les décisions des développeurs ont un impact aussi sur le
CPU, la mémoire et l'usage du réseau. Les développeurs doivent aussi prendre en consid-
ération la performance au moment d’évoluer le design de ’application des appareils mobiles.
Le probleme est que les développeurs n’ont pas de soutien pour comprendre 'impact de
leurs décisions sur la performance de leurs apps. Ce probléme est aussi vrai pour les utilisa-
teurs d’appareils mobiles qui installent des apps en ignorant s’il existe des alternatives plus

efficaces.

Dans cette dissertation, nous aidons les développeurs et les utilisateurs a connaitre d’avantage
I'impact de leurs décisions sur la performance des applications qu’ils développent et qu’ils
consomment. Nous voulons aider les développeurs et les utilisateurs a développer et choisir

des applications performantes. Nous fournissons des observations, des techniques et des lignes
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directrices qui aiderons les développeurs a prendre des décisions informées pour améliorer la
performance de leurs applications. Nous proposons aussi une approche qui peut servir de
complément aux marchés des applications pour appareils mobiles pour qu’ils puissent aider

les développeurs et les utilisateurs a chercher des applications efficientes.

Notre contribution est un pas précieux vers l'ingénierie de logiciels performants pour les
applications des appareils mobiles et un avantage pour les utilisateurs d’appareils mobiles

qui veulent utiliser des applications performantes.
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ABSTRACT

Mobile device applications (apps) play nowadays a central role in our life. Although energy
consumption affects battery life of mobile devices and limits device use, we use them almost

anywhere, all the time, and for almost everything.

With the exponential growth of the market of mobile device apps in recent years, devel-
opers have witnessed a radical change in the landscape of software development. Mobile
apps introduce new challenges in software design and implementation due to the constraints
of internal resources (such as battery, CPU, and memory), as well as external resources
(as data usage). Thus, traditional non-functional requirements, such as functionality and

maintainability, have been overshadowed by performance.

Researchers are actively investigating the role of coding practices on energy consumption.
However, CPU, memory, and network usages are also important performance metrics. Al-
though the hardware of mobile devices has considerably improved in recent years, emerging
market users own low-devices and have limited access to data connection. Therefore, devel-
opers should manage resources mindfully because emerging markets own a significant share
of the new users coming on-line for the first time. Thus, the performance of mobile device

apps is a very important topic.

Recent studies suggest that software engineers can help reduce energy consumption by con-
sidering the energy impacts of their design and implementation decisions. But developers’
decisions also have an impact on CPU, memory, and network usages. So that, developers
must take into account performance when evolving the design of mobile device apps. The
problem is that mobile device app developers have no support to understand the impact of
their decisions on their apps performance. This problem is also true for mobile device users

who install apps ignoring if there exist more efficient alternatives.

In this dissertation we help developers and users to know more about the impact of their
decisions on the performance of apps they develop and consume, respectively. Thus, we
want to assist developers and users in developing and choosing, respectively, efficient mobile
device apps. We provide observations, techniques, and guidelines to help developers make
informed decisions to improve the performance of their apps. We also propose an approach
to complement mobile device app marketplaces to assist developers and users to search for
efficient apps. Our contribution is a valuable step towards efficient software engineering for

mobile device apps and a benefit for mobile device users who want to use efficient apps.
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CHAPTER 1 INTRODUCTION

Android is an open-source operating system for mobile devices developed by Google, while
iOS is a mobile operating system created by Apple for its hardware. Of the 379 million smart-
phones sold in the first quarter of 2017!, 327 million ran Android (86%) and 52 million ran
i0S (14%). Thus, Android is the most popular mobile operating system globally. There
are now two billion monthly active Android devices and the number of developers with more
than one million monthly apps installs grew by 35% year on year 2. Both platforms offer apps
through their marketplaces, the Google Play Store App and the Apple App Store. Mobile
device apps play a central role in our life today. Although energy consumption affects battery
life of mobile devices and limits device use, we use them almost anywhere, all the time, and
for almost everything: to check our email, to browse the Internet, and to access critical

services such as banking and health monitoring.

The pace of mobile devices growth around the world is unprecedented. Billions of new users
from emerging markets are coming on-line for the first time. It is what Google calls build

3. However, a majority of users in these underdeveloped markets face

for the next billion
constraints not commonly seen in developed markets: limited access to data connections,
high costs when data connections are available, low-end devices with reduced memory, and

limited opportunities to recharge batteries during the day.

To address the needs of users, apps performance metrics such as energy consumption and
CPU, memory, and network usages must be aligned closely with users limitations. Mobile
device apps are today so useful and convenient that their users depend entirely on them, and

thus on their performance.

Apps performance is also important for developers. Apps marketplaces are provided with
customer ratings as a quality metric. In an internal analysis of app reviews on Google Play,
Google realized that half of one-star reviews (the lowest rating) mentioned app performance?.
Thus, performance metrics are proxies for quality of mobile apps. Therefore, developers who
focus on app performance can see improvements in their ratings and, thus, their retention

and monetization.

Developing efficient apps is a challenging task. Efficient mobile device apps are apps that

make an optimal use of device resources, what improve their performance. Even using the

1. https://www.gartner.com/newsroom/id /3725117

2. https://android-developers.googleblog.com/2017/05/whats-new-in-google-play-at-io-2017.html
3. https://developer.android.com/distribute/best-practices/develop/build-for-the-next-billion.html
4wrhttpsy//android=developersigoogleblog.com /2017 /08 /how-were-helping-people-find-quality.html
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standard process and rules of object-oriented design for the development of mobile device
apps, developers may introduce anti-patterns (wrong design choices) that could have a neg-
ative impact on apps performance (Li et Halfond, 2014a). In addition to this, during the
development of mobile device apps, developers must make design and implementation deci-
sions such as deciding about which data structure implementation to use to store information,
to choose a Third-Party Library (TPL) to monitor crashes or users activity, and to decide
to include or not ads. However, they do not know the impact of these decisions on the per-
formance of their apps. For example, developers could want to include ads in their apps but
they have different TPLs among which to choose, and some could be more efficient than oth-
ers. Android offers specific implementations for different data structures to be more memory
efficient than the ones offered by Java. However, there are no evidences of the magnitude of

the improvement in memory usage, if any, or their impact on energy consumption.

To develop efficient mobile device apps, developers must collect and analyze performance
metrics during and after the development process. With Android Vitals®, which has been
announced by Google at the I1/O 2017 conference, Google plans to help developers find
different performance issues in their mobile apps. Android Vitals identifies different issues
in Android apps and reports them to their developers. The data is collected from Android
devices whose users have opted-in to automatically share usage and diagnostics data. The
Play Console aggregates this information and displays metrics about stability, rendering time,
and battery usage, in a specific dashboard. However, this information is private to developers

and it is only accessible by them.

We believe that making performance information of apps publicly available would be an
essential step towards efficient software engineering for mobile device apps. It would put
pressure on developers to build efficient apps, which benefits mobile device users who install
these apps. Today, mobile device users do not have access to information about apps perfor-
mance and they compare and select apps based on their rating and numbers of downloads.
Thus, users choose apps that other users choose (popularity). Even if they consume more
energy or transmit more data over the network than other apps with similar functionalities

(Saborido et al., 2016).

Even if mobile device apps performance would be available in marketplaces, the choice of
optimal apps would be complicated for users because of the cognitive effort imposed to
discriminate between different apps and many different possible metrics with several values.
In addition, mobile device users could need different kinds of performance depending on their

locations, needs at certain times, and usages. Thus, developers should optimize their apps

5. https://developer.android.com/distribute /best-practices/develop/android-vitals.html
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taking into account their users’ context. For example, users in emerging markets have limited
access to data connections and experience high costs when data connections are available.
They also own devices with low memory, processing power, and screen resolution. In this
context it would be better for users to install efficient apps in terms of CPU, memory, and
network usages, and developers could have this fact in mind when they develop apps for those
markets. Some performance metrics could be more important than others depending on the
context and one app could be preferred over others because of its performance. The context
of use affects users and developers’ preferences about the metrics to be optimized when they

choose and develop mobile device apps, respectively.

1.1 Research Goal

The main goal of our research is to assist developers and users of mobile device apps in
developing and choosing, respectively, efficient apps. We address our research goal through

the following key directions:

1. Providing techniques and guidelines to help developers make informed design and

implementation decisions to improve the performance of their apps.

2. Defining an approach to complement mobile device app marketplaces to assist devel-
opers in the comparison of apps performance, and help users make informed decisions

to choose their apps.

Our thesis is that multi-objective approaches support developers and users to implement and

choose efficient mobile device apps, respectively.

We focus our research on the Android operating system. We choose this platform because
it is the most popular mobile device operating system globally. However, our solutions are
not intrinsically dependent on Android and they could also apply as well to iOS minus

implementation details.

1.2 Research Contributions

To reach our research goal we do the following:

1. We conduct different research investigations to help mobile device app developers

make informed decisions about the design and implementation of their apps.

(a) We first study the impact of eight well-known object-oriented and Android spe-

cifievanti=patternsson energy consumption. Then, we propose an Energy-Aware
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Refactoring approach for MObile apps (EARMO). It is a multi-objective refac-
toring approach to detect and correct anti-patterns in mobile device apps, while
improving energy consumption. Our approach leverages information about the
energy cost of anti-patterns to automatically generate refactoring sequences that
developers can apply to improve the quality of the source code and—or to reduce

the energy consumption of their apps. We describe this research in Chapter 5.

From our previous study we obtain that the Android anti-patterns studied have
a negative impact on energy consumption of apps. One of these anti-patterns ex-
ists in Android apps when developers use a Java map implementation instead of
a specific implementation offered by the Android Application Programming In-
terface (API). Although Android offers different map implementations to choose
from, the official documentation is ambiguous about the performance benefit of
using these specific implementations. We study the use of map data structures by
Android developers. First, we perform an observational study of 5,713 Android
apps. Second, we conduct a survey to assess developers’ perspective on Java and
Android map implementations. Then, we perform an experimental study compar-
ing their performance. We conclude with guidelines for choosing among these map

implementations. We describe this research in Chapter 6.

Analyzing the source code of apps in our previous study, we observe that mobile
device apps implement some functionalities integrating TPLs. We propose an
approach to assist mobile device app developers in choosing an efficient TPL for a
concrete task. We evaluate this approach by performing a case study over the three
most popular TPLs in each of the three most popular categories of Android TPLs.
Specifically, we obtain quality metrics for these TPLs and we analyze their impact
on the performance of mobile device apps. We provide a catalog of performance

metrics for these popular TPLs. We describe this research in Chapter 7.
One of the most popular TPL integrated by developers in their apps is for ad-

vertising. Ads allow developers to keep their content free and available, reaching
more users, while still making revenues. We perform a study about ads-supported
Android apps and their corresponding paid versions to understand their differ-
ences in terms of performance, functionalities, permissions, implementation, and
development and release processes. We also define different equations to estimate
the network usage of independent ads, the percentage of battery drained due to
ads, and the time in which an ads-supported app costs more than its paid version
because of the presence of the ads. From our observations, we provide develop-

ersradvicesraboutsthe usage of ads in their mobile device apps. We describe this

www.manaraa.com



research in Chapter 8.

2. Apps with similar functionalities could have a different performance due to design and
implementation developers’ decisions such as data structures used, TPLs integrated,
and—or the inclusion or not of ads. For example, to visit an article in Wikipedia, a
browser could consume more energy and transmits more data over the network than
another browser, because of the inclusion of ads in the former. It means that there
exist a trade-off in terms of performance between different apps. We propose an App
Performance Optimization Advisor (APOA) for mobile device app marketplaces. It
is a recommendation system that can be implemented in any marketplace for helping
users and developers to compare apps in terms of different metrics. APOA takes as
input metric values of apps and a set of metrics to optimize. It solves a combinatorial
multi-objective optimization problem and it generates, as output, optimal sets of apps.
To highlight the capabilities of APOA, we provide an Android case study. We describe
this research in Chapter 9.

Parts of this dissertation have been published at conferences such as SANER (Saborido et al.,
2016), ICPC (Saborido et al., 2017), and MCDM (Saborido et Khomh, 2017). In addition,
parts of this dissertation have been accepted for publication at IEEE Transactions on Software
Engineering (Morales et al., 2017a) or are being reviewed at Journal of Empirical Software

Engineering and at Journal of Sustainable Computing: Informatics and Systems.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we give some back-
ground information related to our work. Then, we present a discussion of the existing lit-
erature related to efficiency of mobile device apps in Chapter 3. We describe the process
we use in our research to collect and analyze performance metrics of mobile device apps in
Chapter 4. Next, in the following four chapters, we present our research to help developers
make informed design and implementation decisions to improve the performance of their
apps. In Chapter 5, we study the impact of anti-patterns on the energy consumption of mo-
bile device apps. Then, we propose EARMO, an approach to propose refactoring sequences
to correct anti-patterns while improving the energy efficiency of apps. In Chapter 6, we study
the performance of Java and Android map implementations for different operations and data
sizes. In addition to energy consumption, we also study CPU time and memory usage. Then,
we provide guidelines to help developers choose map implementations to improve their apps

performance. In Chapter 7, we focus on TPLs and we study the impact of popular TPLs
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on the performance of apps. We also propose an approach to assist developers in choosing
efficient TPLs for their apps. Then, in Chapter 8, we study ads-supported and paid versions
of Android apps, to understand their development process and to analyze the impact of ads
on apps performance in terms of energy consumption and CPU, memory, and network us-
ages. We conclude providing developers with some advices to improve the performance of
free and paid versions of apps. Next, in Chapter 9, we present APOA, an approach to assist
developers and users in the comparison and selection, respectively, of efficient mobile device

apps. Finally, in Chapter 10, we present our conclusion, the limits and constraints of our

research, and future work.
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CHAPTER 2 BACKGROUND

In this chapter, we introduce the basic concepts used in this dissertation. We describe the
performance metrics on which we focus and how they are usually measured in Android and
iOS platforms. Then, we briefly introduce the concept of scenarios of usage and the idea of
test cases for mobile devices. Finally, we present some concepts and techniques related to

multi-objective optimization.

2.1 Performance Metrics

In the rest of this dissertation, we consider the following performance metrics: energy con-
sumption (power usage), and CPU, memory, and network usages. We describe these perfor-

mance metrics next.

Energy Consumption (Power Usage)

Energy consumption determines the battery life of mobile devices and, therefore, their avail-
ability. Without energy, a mobile device cannot be operated. Energy is defined as the
capacity of doing work while power is the rate of using energy. Energy (FE) is measured in
Joules (J) while power (P) is measured in Watts (I¥). Energy is equal to power times a
time period T in seconds. Therefore, F = P x T. Thus, if an app uses two Watts of power

for five seconds it consumes 10 Joules of energy.

CPU Usage

CPU usage describes the proportion of time that the processor is in use. A mobile device’s
CPU usage can vary depending on the types of tasks that are being performed by an app. It
is usually measured in percentage (%), which indicates how much of the processor’s capacity
is currently in use by the system, or in the time that a method is actually running in the

system. Typically, CPU is one of the primary sources of energy consumption.

Memory Usage

Memory usage is the amount of memory (RAM) that a task uses when it is running. This
memory is used to save internal data and instructions to be executed. Memory limits the

number of apps users can run and the amount of data they can work with.
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Network Usage

Network or data usage refers to the amount of data moving across a network (Wi-Fi, 3G,
4G, ...). This metric is important for users and developers because network access could be
expensive in terms of bandwidth costs for some users. Typically, network usage is one of the

primary sources of energy consumption.

Measurements

Energy impact of apps running on mobile devices can be measured using hardware based
approaches as the popular Monsoon Power Monitor. However, energy measurements can
also be collected using software based approaches as the developer tools designed by Google
or Xcode, for Android and iOS platforms, respectively. Because Android is based on Linux,
CPU, memory, and network usages can be collected using well-known Linux commands, as
top and tcpdump, or using the Android command dumpsys. For iOS, Xcode instruments can

be used for the collection of these performance metrics in Apple platforms.

2.2 Scenarios of Usage and Test Cases

Independently of how performance metrics are measured, the software under test should be
run while performance metrics are collected. Developers must define scenarios to simulate

the user interaction or implement test cases to test app methods independently.

Appium is an open source test automation framework for Android and iOS apps. Calabash
is a different alternative that enables developers to write and execute automated acceptance
tests of mobile apps. It is also cross-platform, supporting Android and iOS native apps. There
also are specific automation tools for each platform: such as Monkeyrunner or Robotium for

Android platforms, or EarlGrey for iOS.

2.3 Multi-objective Optimization

Multi-objective optimization problems are mathematical programming problems with a vector-
valued objective function that is usually denoted by f(x) = (f1(x), ..., fin(x)), where f;(x),
for j =1,...,m, is a real-valued function defined on the feasible region F C R™. The deci-

sion space belongs to M while the criterion space belongs to #™, and the multi-objective
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optimization problem can be stated as follows:

optimize [f1(x), s frn(X)
s.t. xeF

In the functional space of criterion, some objective functions should be maximized (j € Jaz)
while other objective functions should be minimized (j € Jp,). These subsets of indices
verify that Joee U Jmin = {1,...,m}. In this context, optimality is defined on the basis of
the concept of dominance, in such a way that solving the above problem implies finding the
subset of non-dominated solutions, that is those feasible solutions which are not dominated
by any other feasible one. A feasible solution x° dominates another solution x € F if and
only if f;(x%) > f;j(x), for every j € Ja and f;(x%) < f;(x), for every j € Jym, with at
least one strict inequality. The set of non-dominated solutions will also be referred by Pareto
optimal solutions and define the efficient frontier or Pareto optimal front of the multi-objective
optimization problem (see, for example, Miettinen, 1999). The concepts of dominance and
Pareto optimal front are graphically shown in Figure 2.1: for a bi-objective optimization

problem.

Vg

Ji

Figure 2.1: Criterion space of a multi-objective optimization problem with two objectives to
be minimized. Points A and B Pareto dominate point C, but points A and B are Pareto
equivalents. The highlighted line is the efficient frontier or Pareto optimal front.

In this dissertation we want to optimize different metrics. Thus, we must handle sev-
eral objectives in conflict each other at the same time. Different methodologies exist to
solve multi-objective optimization problems. Multiple Criteria Decision Making (MCDM)
(Hwang et Masud, 1979; Miettinen, 1999) and metaheuristics, such as Evolutionary Multi-
objective Optimization (EMO) (Deb, 2001; Coello et al., 2007), are the most popular method-
ologies. They have contributed with several different approaches to solve real problems. EMO

algorithmsyinsgeneralypfindsas evenly distributed set of Pareto optimal solutions to approxi-
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mate the Pareto optimal front while MCDM takes into account some user preferences to find

a reduced set of optimal solutions.

We use EMO algorithms because we prefer to find large set of optimal solutions. Evolu-
tionary Algorithms (EA) are nature-inspired search strategies based on the natural selection
of evolution. An EA usually uses a single population (panmixia) of individuals and apply
the operators to them as a whole. Well-accepted subclasses of EAs are Genetic Algorithms
(GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strate-
gies (ES). There also exist the so called structured EAs, in which the population is decen-
tralized. Among the many types of structured EAs, distributed and cellular models are two
popular optimization variants. In many cases, these decentralized algorithms provide a bet-
ter sampling of the search space, resulting in an improved numerical behavior with respect

to an equivalent algorithm in panmixia.

EAs are especially well suited for tackling multi-objective optimizations problems because
of their ability to find multiple trade-off solutions in one single run. Thus, the use of EMO
algorithms for solving multi-objective optimization problems has become very popular in the
last two decades and, currently, it is an active research field. In the EMO field, solving a
multi-objective optimization problem is understood as finding a set of non-dominated solu-
tions as close as possible to the Pareto optimal front (convergence) and that represents the
entire Pareto optimal front (diversity). EMO algorithms start with a randomly created pop-
ulation of individuals. Afterwards, the algorithm enters in an iterative process that creates
a new population at each generation, by the use of operators which simulate the process of
natural evolution: selection, crossover, mutation and—or elitism preservation. These variation
operators allow to transform a candidate solution to explore the decision space in the search
of most attractive solutions and to escape from local optima. One of the main advantages
of EMO algorithms is that they are versatile and can deal with multi-objective optimization
problems having variables and objective functions of different nature; that is, they can eas-
ily handle discontinuous and concave Pareto optimal fronts, and binary and integer-valued

variables.

In this dissertation we use the EMO algorithms NSGAII, SPEA2, and MOCell. We choose
them because they have been successfully applied during the last decade to solve hundreds of
multi-objective optimization problems in many fields (software engineering, medicine, port-

folio selection, etc). Next, we introduce these algorithms.
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Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm IT (NSGAII), proposed by Deb et al. (2002),
is based on the Pareto dominance and has stood out by its fast non-dominated sorting
procedure for ranking solutions and its elite-preserving mechanism for the selection of the
best individuals. Starting from a randomly generated population, at each generation an
offspring population is created through selection, crossover, and mutation operators. Then,
both parents and offspring are joined and classified into non-dominated fronts as follows.
From the resulting population, the individuals which are not dominated by any other solution
constitute the so-called first non-dominated front. These individuals are temporarily removed
and, subsequently, the second non-dominated front is formed by the next individuals which
are not dominated by any other solution in the population. This process continues until every
individual has been included into some front. Afterwards, the population to be passed to the
next generation is formed by the solutions in the lower level non-dominated fronts. If there are
more solutions in the last front allowed than the remaining space in the new population, the
individuals in this front are sorted according to a crowding distance. Somehow, this distance
measures the objective space around each solution that is not occupied by any other solution
in the population. Subsequently, the new population is completed with the individuals with

the least crowding distance.

Strength Pareto Evolutionary Algorithm 2

Zitzler et Thiele (1999a) developed an algorithm to multi-objective optimization, named the
Strength Pareto Evolutionary Algorithm (SPEA). It uses a mixture of established and new
techniques to find multiple Pareto optimal solutions in parallel. This algorithm stores the
non-dominated solutions found as generations elapse in an external or archival population
set. The SPEA uses the concept of Pareto dominance in order to assign scalar fitness values
to individuals. SPEA2 (Zitzler et al., 2001) added several improvements to the previous
version of the algorithm to enhance the robustness of the fitness assignment scheme. The
improvements take into account how many individuals each individual dominates and is
dominated by through the use of a nearest neighbor density estimation technique and an
archive truncation method that guarantees the preservation of boundary solutions. The
algorithm uses variation operators to evolve a population, like NSGAII, but with the addition
of an external archive. The archive is a set of non-dominated solutions, and it is updated
during the iteration process to maintain the characteristics of the non-dominated front. In
SPEA2, each solution is assigned a fitness value that is the sum of its strength fitness plus a

density estimation.
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Multi-objective Cellular Genetic Algorithm

The Multi-objective Cellular Genetic Algorithm (MOCell) is a cellular genetic algorithm
(¢cGA) proposed by Nebro et al. (2007). In a basic cGA, the population is usually structured
in a grid of different dimensions, and a neighborhood of solutions is defined on it. An
individual may only interact with individuals belonging to its neighborhood, so its parents
are chosen among its neighbors with a given criterion. Recombination and mutation operators
are applied to the individuals with given probabilities. Afterwards, the algorithm computes
the fitness value of the new offspring and inserts it into the equivalent place of the current
individual in the new (auxiliary) population following a given replacement policy. After
applying this reproductive cycle to all the individuals in the population, the newly generated
auxiliary population is assumed to be the new population for the next generation. The
overlapped small neighborhoods of ¢GAs help in exploring the search space because the
induced slow diffusion of solutions through the population provides a kind of exploration
(diversification), while exploitation (intensification) takes place inside each neighborhood by
genetic operations. Besides, the neighborhood is defined among tentative solutions in the

algorithm, with no relation to the geographical neighborhood definition in the problem space.

MOCell includes an external archive, like SPEA2, to store the non-dominated solutions found
during the search process. It uses the crowding distance of NSGAII to maintain the diversity
in the Pareto front. The selection consists in taking individuals from the neighborhood
of the current solution (cells) and selecting another one randomly from the archive. After
applying the variation operators, the new offspring is compared with the current solution
and replaces the current solution if both are non-dominated, otherwise the worst individual

in the neighborhood will be replaced by the offspring.

www.manaraa.com



13

CHAPTER 3 RELATED WORK

There is a growing body of work on analyzing and optimizing the performance of mobile
devices. Most of them focused on energy consumption as the most important performance
metric. Although software energy consumption optimization is a relatively new topic, sev-
eral works have studied the impact of developers and users’ decisions on battery life. In
this, chapter we comment relevant works related to the improvement of mobile device apps

performance.

3.1 Developers’ Decisions and Performance of Apps

Cuervo et al. (2010) proposed an approach that enables fine-grained energy-aware offload of
mobile code to the infrastructure. It decides at runtime which methods should be remotely
executed, driven by an optimization engine that achieves the best energy savings possible
under the mobile device’s current connectivity constrains. Kemp et al. (2012) proposed a
framework for computation offloading for mobile devices that can be used to reduce the energy
consumption on and increase the speed of computing intensive operations. They evaluated
the proposed approach with two real world mobile device apps, an object recognition app and
a distributed augmented reality game, and showed that little work was required to enable

computation offloading for these two apps.

Energy has also been studied in test cases generation. Li et al. (2014b) proposed an ap-
proach for minimizing the energy consumption of in-situ test suites. It encodes the test
suite minimization problem as an integer linear programming problem. Solving this prob-
lem generates a minimized test suite that is guaranteed to satisfy the tester’s minimization
goals and use as little energy as possible. Sahin et al. (2014b) studied the impact of code
obfuscation on energy consumption. They conducted an empirical study of the effects of 18
code obfuscation techniques on the amount of energy consumed by executing a total of 15
usage scenarios spread on 11 Android apps. They concluded that obfuscations can have a
statistically significant impact on energy usage, however, the magnitudes of these impacts
are unlikely to impact mobile device users. Field et al. (2014) presented a modular energy-
aware computing framework that provides a layer of abstraction between sources of energy
data and the apps that exploit them. This approach replaces platform specific instrumenta-
tion through two APIs to allow the development of code that may portably provide energy
transparency to developers. In turn, it enables informed decisions to be made with respect

to trade-offs regarding energy consumption. Linares-Vasquez et al. (2014) studied how dif-
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ferent Android API usage patterns can influence energy consumption in mobile device apps.
They measured energy consumption of method calls when executing typical usage scenarios
in 55 Android apps from different domains. They analyzed the consumption of individual
APIs as well as their usage patterns. Their findings indicate that some consolidated de-
sign and implementation practices, such as the use of Model-View Controller, information
hiding, or the implementation of the persistence layer through a relational database may
have a non-negligible impact on the app energy consumption. In addition, they found that
APIs related to Graphical User Interface (GUI), image manipulation, and database, repre-
sent, all together, 60% of the energy-greedy APIs. Modern mobile devices use Organic Light
Emitting Diode (OLED) displays that consume more energy when displaying light colors as
opposed to dark colors. Mobile device apps can be energy efficient by modifying their GUIs.
Li et al. (2014c) developed an approach for automatically rewriting Web apps so that they
generate more energy efficient Web pages. They shown that it can achieve a 40% reduction
in display energy consumption. The approach rewrites the server side code and templates of
a Web app so that the resulting Web app generates pages that are more energy efficient when
displayed on a mobile device. The rewritten Web app can then be made available to OLED
mobile device users via automatic redirection or a user-clickable link. Something similar
is done for Android apps by Linares-Vasquez et al. (2015). They proposed an approach for
generating color palettes using a multi-objective optimization technique that produces color
solutions optimizing energy consumption of GUIs and their contrast to keep them visually
attractive. Wan et al. (2015) defined a different approach to assist developers in identifying
the user interfaces of their apps that can be improved with respect to energy consumption.
They used the approach to investigate 962 Android market apps and found that 41% of these
apps have display energy hotspots, some of them consuming over 100% more display energy
than a display-energy-optimized version. Recently, Mohan et al. (2017) studied the energy
consumption of the storage subsystem on an Android mobile device. They analyzed the
energy consumption of different storage primitives, such as sequential and random writes,
on two popular mobile file systems, ext4 and F2FS. They concluded that storage can con-
sume more energy than the network, and as much energy as the display. Lyu et al. (2017)
studied the energy consumption of local database usage in Android apps and they found
that database initialization and write operations are the most expensive. They also found
that these operations appear frequently in loop structures; many of which are not properly

batched in explicit transactions, which can cause significant inefficiencies.

There are much more research about developers’ decisions and apps performance. However,

next, we describe only closer work to our research.
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3.1.1 Anti-patterns and Refactoring Operations

Gottschalk (2013) and Park et al. (2014) have studied the effect of applying refactorings to a
set of software systems; comparing the energy difference between the original and refactored
code. Li et Halfond (2014b) investigated the impact of Android developing practices. They
found that bundling network packets up to a certain size, accessing class fields, extracting
array length into a local variable in a for-loop, and inline getters and setters all led to reduced
energy consumption. However, other practices, such as limiting memory usage had a very
minimal impact on energy usage. These results serve to inform developers about specific

coding practices that can help reduce the energy consumption of their apps.

Reimann et al. (2014) proposed a catalog of 30 quality smells specific to the Android plat-
form. These smells were reported to have a negative impact on quality attributes like energy
consumption. In another work, Sahin et al. (2014a) conducted an empirical study that inves-
tigates the impacts of applying refactorings on energy usage. They investigated the impact
of six commonly-used refactorings on several apps. The results of their study show that
refactorings impact energy consumption and that they can either increase or decrease the
amount of energy used by an app. Banerjee et Roychoudhury (2016) proposed an approach
to refactor mobile apps by relying on energy-consumption guidelines to control for energy-
intensive device components. Their technique uses a set of energy-efficiency guidelines to
refactor the design expression of an app. They define a design expression as a regular expres-
sion that represents the ordering of energy intensive, resource usages, and invocation of key
functionalities within the app. To demonstrate the efficacy of their technique they analyzed
ten open-source apps, reducing the energy consumption of these apps between 3% to 29%
after refactoring. Hecht et al. (2016) conducted an empirical study with different versions
of open source Android apps to determine if the correction of Android anti-patterns had a
significant impact on user interface (number of delayed frames) and memory usage. They
reported that correcting these Android code smells effectively improves the user interface
and memory usage in a significant way for Android Dalvik runtime. They also observed that
the positive and negative impact of code smells correction cumulates. Carette et al. (2017)
conducted an empirical study on six Android apps to assess the energy impact of Android
performance and also Android picture anti-patterns. For this purpose, they developed an
automated approach that detects and corrects these anti-patterns, assessing their energy im-
pact to retrieve the best version of an app. Their results confirm that Android anti-patterns
have an impact on the energy consumption of apps. They concluded that by correcting only
one performance Android anti-pattern one can reduce up to 3.86% the energy consumption

of an app, while the correction of several anti-patterns can reduce up to 4.83% of the energy
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consumption.

EARMO, our proposed approach, differs from these previous works in the sense that, beside
detecting anti-patterns in mobile apps, it is a multi-objective approach to generate optimal
sequences of refactoring operations that achieve a maximum removal of anti-patterns while
controlling for energy consumption at the same time. We avoid a direct aggregation of differ-
ent potentially conflicting objectives (number of anti-patterns and energy consumption), al-
lowing software maintainers to select among different trades or achieve a compromise between
the two objectives. Thus, EARMO allows developers to select the sequence of refactorings
that decrease more the energy consumption or the one that improve more the maintainability
of their code. Other developers might be more conservative and select solutions located in
the middle of these two objectives. Developers have the last word, and EARMO supports

them by providing different alternatives.

3.1.2 Data Structures

Chameleon, proposed by Shacham et al. (2009), is an automatic tool that assists Java devel-
opers in choosing the appropriate collection implementation for their apps. During program
execution, it collects traces and computes heap-based metrics on collection classes to gener-
ate a list of suggested collection adaptation strategies. The tool can apply these corrective
strategies automatically or present them to the developer. It focuses on memory usage and
Java apps. Hunt et al. (2011) studied the relationship between the execution time and en-
ergy consumption of three lock-free data structures: FIFO queue, double-ended queue, and
sorted linked list. Their results show that lock-free data structures cannot only provide
significant performance improvements in many situations, but also that this increase in per-
formance can improve the data structure’s energy efficiency as well. Manotas et al. (2014)
proposed SEEDS, a tool to optimize Java apps by selecting the most energy efficient library
implementations for Java’s collections. An empirical study and their results show that using
such automation can improve energy usage of apps without requiring developers to deal with
low-level energy profiling tools and-or analyses. They concluded that SEEDS reduces the
energy consumption of Java apps by up to 17%. Liu et al. (2015) empirically studied the op-
timization space of application-level energy management from the data-oriented perspective.
The energy optimization space is explored through multiple dimensions, ranging from data
access pattern, data organization and representation, data precision, and data input/output
intensity. Concerning data access patterns, they concluded that random access consumes
much more energy than its sequential counterpart, due to cache locality. In addition, they

also observed that read and write operations consume the same amount of energy. Regard-

www.manaraa.com



17

ing data organization, they found that object-oriented encapsulation, although it has many
benefits such as modularity, information hiding, and maintainability, it pays a toll on energy
consumption. They focused on Java programs running on Intel CPUs. Hasan et al. (2016)
created detailed profiles of the energy consumed by common operations done on Java list,
map, and set implementations. They also provided a guideline about the scenarios in which

the energy consumption of alternative collections classes becomes an issue.

There are previous research studying the impact of data structures on different performance
metrics. Most of the existing research focus on desktop computers and Java programs. Al-
though Hasan et al. (2016) ran their experiments in an Android phone, none of the previous
works have considered specific Android data structures. We study Android map implemen-
tations because the official documentation is ambiguous about the the performance benefit
of using these implementations. However, the Android documentation recommends them
as more efficient alternatives to the Java map implementation HashMap. We analyze and
compare the performance of these map implementations to conclude with guidelines for de-

velopers.

3.1.3 Third-party Libraries

Minelli et Lanza (2013) observed that external calls represent more than 75% of the total
number of method invocations in mobile device apps. They concluded that to comprehend
Android apps it is important to also understand the behavior of the used external libraries.
Gorla et al. (2014) studied the inconsistencies between app description and requested per-
missions due to the usage of TPLs. Ruiz et al. (2014) analyzed the relationship between the
number of TPLs in Android apps and their user ratings. They focused on advertising TPLs,
concluding that the number of ad libraries in Android apps is not related to their ratings.
Wang et al. (2015) proposed WuKong, an accurate and scalable approach to detect Android
app clones that includes a clustering-based approach to detect TPLs efficiently and accurately
without prior knowledge. Using WuKong they studied the impact of TPLs on app clone de-
tection. Based on their evaluation, they concluded that more than 60% of the sub-packages
in Android apps are from TPLs. Therefore, detecting and filtering these TPLs is important,
because if apps are dominated by these TPLs, app clone detection results could be signif-
icantly skewed. Ma et al. (2016) and Li et al. (2017) have recently proposed LibRadar and
LibD, respectively. They are tools to detect TPLs in Android apps. LibRadar can detect the
TPLs used in a given app instantly based on static analysis and feature comparison. LibD is
a more recent approach to identify TPLs. Different from LibRadar, LibD is based on feature

hashing and can better handle code whose package and method names are obfuscated. We
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also found some works focusing on code completion that recommend API usages for mobile
apps (Nguyen et al., 2015), learn API usages from bytecode (Nguyen et al., 2016), or mine
and recommend APT usage patterns (Niu et al., 2017).

Although TPLs account for most of the code of Android apps, there are no studies about the
impact of TPLs on apps performance. Thus, developers do not know if TPLs they choose to

integrate in their apps are less efficient than others.

3.1.4 Ads Business Model

The impact of ads on apps performance has been studied in different works. Wei et al. (2012)
proposed a monitoring and profiling system for characterizing Android app behaviors at
multiple layers. After analyzing top free and paid Android apps, they observed that ads-
supported versions of apps could end up costing more than their paid versions due to increased
advertising/analytics traffic. Vallina-Rodriguez et al. (2012) analyzed four ad networks and
concluded that ad traffic can be a significant fraction of the total traffic of the users. They
also found that mobile ad traffic is responsible for important energy overhead by forcing
off-line apps to become on-line apps. Rasmussen et al. (2014) studied the effects of ads on
energy consumption and the effects of attempts to block the ads. They compared different
methods of blocking ads and compared the power efficiency of these methods. They concluded
that there are many cases where ads-blocking software resulted in increased power usage.
Gui et al. (2015) analyzed 21 highly-rated free Android apps and showed that the use of ads
leads to mobile device apps that consume more energy and use more CPU, memory and
network. They found that the median relative energy, CPU, memory, and bandwidth costs
of ads are 15%, 56%, 22%, and 97%, respectively.

There are several approaches focusing narrowly on how to improve the performance of mo-
bile ads. Khan et al. (2012) proposed a new advertisement delivery approach to mitigate
the stress from network traffic related to ads in free mobile device apps. The approach pre-
dicts user context to identify relevant advertising content, and then opportunistically use
inexpensive wireless networks to predictively cache advertisement content on mobile devices.
Recently, Pamboris et al. (2016) proposed AD-APT, a system to avoid the adverse implica-
tions of mobile advertising on energy consumption and network usage. AD-APT strikes a
balance between these two performance metrics refactoring ads-supported apps automati-
cally to adjust the frequency of mobile ad occurrences at runtime. It is based on policies that
consider the device’s battery life, the type of network connectivity, and limits on network
usage. Authors evaluated it on 10 popular ad-supported Android apps and showed that it

can yield reductions of up to 40% in energy consumption and 30 times in network usage.
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No previous work studied if the impact of ads on performance is statistically significant. The
impact of ads on some performance metrics could be small and it could be unperceivable
by users. We study the ads-business model and differences between ads-supported and paid
Android apps. We do that to know more about the impact of developers’ decisions on apps
performance due to advertising TPLs. We also define different equations to help developers

and users know when the hidden costs of ads-supported apps overtake the clear cost of paid

apps.

3.2 Users’ Decisions and Performance of Apps

Amsel et Tomlinson (2010) proposed a tool for estimating the energy consumption of cur-
rently installed software systems. This tool determines which software systems are the most
efficient given the user’s current computer configuration. It presents this information to the
user in the form of a chart comparing the CPU usage and the energy consumption of soft-
ware systems in the same category. They used the results to make suggestions to the users
about which software systems to use. They tested Internet browsers, word processors, and
audio software running their approach on a desktop computer. Zhang et al. (2014) analyzed
the energy consumption of text editing desktop apps, email clients, and music players. They
highlighted the perils that users face and the ultimate responsibility users have for the battery
life of their mobile devices. They investigated multiple scenarios demonstrating that apps can
consume energy differently for the same task thus illustrating the trade-offs that end-users
can make for the sake of energy consumption. For example, they obtained that a command
line music player uses more than six times less energy than a GUI one, or that web-based
desktop apps tend to consume more energy than non-web based. Behrouz et al. (2015) pro-
posed EcoDroid, an hybrid static and dynamic analysis technique that estimates the energy
cost of Android apps, from a given category, and ranks them accordingly to help users make
informed decisions. This approach uses a combination of dynamic and static analyses and
test cases, to execute apps and estimates their energy cost based on their API usage. These
estimates take into account the energy cost of the paths executed by test cases. They also
conducted a preliminary evaluation of EcoDroid to assess its overall accuracy in ranking six

apps from a given category according to their energy costs.

EcoDroid is the closest work to our approach APOA. However, while the former focuses on
energy consumption and only for one category of apps, APOA ranks apps from one or more
categories in terms of different performance metrics taking into account developers and users’

preferences. In addition to this, APOA is platform independent.
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CHAPTER 4 PERFORMANCE METRICS COLLECTION

To measure performance metrics of mobile device apps we set up a measurement environment.
We use a real mobile device to run our experiments. We also define scenarios to simulate the
user interaction with apps, and we implement test cases to test app methods independently.
We play scenarios of usage or test cases while we measure performance metrics. We have
performance measurements that we must process and analyze. Next, we describe the mobile
device that we use for our experiments. Then, we describe how we define scenarios and test

cases and how we measure and analyze performance metrics of Android apps.

4.1 Subject Mobile Device

We use a LG Nexus 4 Android phone equipped with a quad-core Krait CPUQ1,500M Hz, a
4.7-inch screen, 16 GB internal storage, 2 GB RAM, and running Android Lollipop (version
5.1.1, Build number LMY47V). Its battery has an electric charge of 2.1 Ah and a voltage
of 3.8 V. This phone is representative of the current generation of Android mobile phones.
Nexus mobile phones are pure Android devices designed by Google and manufactured by one
of the most important mobile companies to provide the best user experience. In addition,

this model of phone has been extensively used in previous research (Linares-Vasquez et al.,
2014; Sahin et al., 2014b; Huang et al., 2016; Sahin et al., 2016).

We choose Android Lollipop because it introduced one of the most significant changes in
Android in recent years: the shift to the relatively new way of executing apps called Android
Runtime (ART), which replaces its predecessor Dalvik. In ART the apps are compiled to
native code once, which improves the memory and CPU performance. On the contrary,
Dalvik runs along with the execution of an app. From Android Lollipop, ART is the only
runtime environment. According to information provided by Google !, more than 70% of the
devices that are active on the Google Play Store (at October, 2017) run Lollipop or later

versions.

4.2 Automation for Apps: Scenarios of Usage and Test Cases

We define scenarios of usage using the Android tool Monkeyrunner 2. This tool provides an

API for writing programs that control an Android device or emulator from outside of Android

1. https://developer.android.com/about /dashboards/index.html
2. https://developer.android.com/studio/test/monkeyrunner/index.html
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code. Thus we can programmatically send actions such as touch and swipe events to it.

To collect long scenarios to simulate typical scenarios of usage of apps, we use the Android

3. This software allows to generate scripts containing the touch and swipe

app HiroMacro
events while a user interacts with an app directly on the phone. We convert the resulting
scripts generated by HiroMacro to Monkeyrunner format. Thus, the interaction to collect
scenarios is done using the phone and the actions can be played automatically from our own

scripts using the Monkeyrunner Android tool.

When we do not need to simulate the user interaction but exercise and measure the energy
consumption of a particular app method, we define and use Android test cases. Android
allows to write JUnit4 style tests that perform tests against the classes in a package. When
we run tests from the command-line with the Android Debug Bridge? (adb) and the am
instrument Android command®, we get more options for choosing the tests to run. We
can select individual test cases, filter tests according to their annotation, or specify testing
options. Because the test run is controlled entirely from the command-line, we can customize

our testing with Python scripts in various ways.

4.3 Performance Measures of Android Apps

Next, we describe how we measure performance metrics of Android apps.

4.3.1 Energy Consumption (Power Usage)

There exist software based approaches to measure the energy consumption of apps, as PETRA
(Di Nucci et al., 2017), but they rely on different sources of information to estimate the
measurements. Imprecisions in those sources could affect the quality of the estimations.
Thus, we use a hardware based approach based on a digital oscilloscope TiePie Handyscope
HS5¢. Tt offers the LibTiePie Software Development Kit (SDK), a cross platform library for
using TiePie engineering USB oscilloscopes through third party software. This SDK allow us
to communicate with the oscilloscope in our scripts. We power the mobile phone by a power
supply that is connected to the phone’s motherboard to avoid any kind of interference with
the phone battery. Between both we connect, in series, a uCurrent 7 device. It is a precision

current adapter for multimeters, converting the input current I proportionally to the output

https://play.google.com/store/apps/details?id=com.prohiro.macro
https://developer.android.com/studio/command-line /adb.html
https://developer.android.com/studio/test /command-line.html
http://www.tiepie.com/en/products/Oscilloscopes/Handyscope  HS5
http://www.eevblog.com/projects/ucurrent /

N oUW
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voltage V,,;. We connect the probe of the oscilloscope to the output of the uCurrent device.
Thus, knowing I and the voltage supplied by the power supply Vi,,, we used Ohm’s law to
calculate the power usage P as P = V,, - I. We calculate the energy associated to each
sample as ¥ = P-T, where P is the power of the smart-phone and T is the period sampling
in seconds. The total energy consumption is the sum of the energy associated to each sample.
Figure 4.1: shows the connection diagram. We disconnect the positive pin of the phone’s
battery and the power supply powers the phone. We cannot completely remove the battery

because the phone would then not turn on.

output phone
+0  O-
uCurrent
. E . .
power i o— 1o batter
supply input S : y
+ +

Figure 4.1: Connection between the power supply, the uCurrent device, and the phone.

To send and receive data we connect the phone via USB to a computer. We disable the USB
charging on the device using an Android app that we have developed, which is free and is

available for downloading® in Google Play.

Our oscilloscope is configurable and its frequency can be set up to 500 Mhz. The Mon-
soon Power Monitor?, one of the most used energy hardware profilers, samples the energy
consumption of the connected device at a frequency of 5 kH z. We set the frequency of our os-
cilloscope to 125 kH z; therefore, a measure is taken each eight microseconds. A low sampling

frequency can make it hard to assess the energy consumption of short methods.

Let us consider a method M, with an execution time of 91.96 milliseconds. Sampling at
125 kH z (one sample each eight microseconds) or 5 kH z (one sample each 0.2 milliseconds)
does not make a difference as enough data points will be collected. However, let us consider
a method Mp which execution lasts 732 microseconds. Measuring at 5kHz, limits the
collection of data points about Mp to no more than three samples, while measuring at
125 kH z we could collect data points up to 92 samples. If a method execution last more than
one millisecond, then the errors will generally averaged out, making the energy estimation
error low or even negligible. However, in methods of short duration (less than one millisecond)

the error may be higher.

Li et al. (2014a) studied what granularity of measurements is sufficient for measuring energy

8. https://play.google.com/store/apps/details?id=ruben.nexus4usbcharging
9. https://www.msoon.com/LabEquipment /PowerMonitor/
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consumption. They concluded that nanosecond level measurement is sufficient to capture
all API calls and methods. But nanosecond level measurement raises another problem, the
bottleneck in high-frequency power sampling due to the storage system, which cannot save
power samples at the same frequency as the power meter can generate them. However,
we found that sampling at 125kHz just accounts for about 0.7% underestimation error
(Saborido et al., 2015). Therefore, we consider that 125kHz is sufficient to measure the

energy consumption of mobile apps.

Battery Usage and Battery Life

Users and developers may have difficulty interpreting energy consumption (power usage)
measurements. However, this metric can be translated into battery usage and—or battery
life.

Battery usage is the percentage of battery charge that is consumed by an app or a block of
code. We calculate battery usage using Equation 4.1 (Sahin et al., 2014b), where E' is the
energy consumption (in Joules) of an app or block or code, and Cz and Vj are the electric

charge (in Ah) and voltage (in V'), respectively, of the phone’s battery.

E 1,000

Zo 2100 41
Vs Cp x3.600 (+.1)

Batteryysage =

Battery life is the duration of the battery in hours. We consider the battery life of an app
or block of code to be the time (in hours) that it takes to drain the battery if a particular
scenario or test case is continuously run. We calculate battery life using Equation 4.2, where

Load is the average power usage of a load (an app or a block of code).

CBXVB

4.2
Load (4.2)

Batteryrife =
For the Nexus 4 phone, Vz = 3.8 and Cg = 2, 100.

4.3.2 CPU Usage

We collect CPU usage using the same approach than Gui et al. (2015). We run in background
the top command on the phone to obtain the percentage of CPU usage associated to a

particular process.

When we need to measure CPU time associated to a particular method, we use the Android

profiler. Execution traces generated by the Android profiler show both the inclusive and
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exclusive CPU times (as well as the percentage of the total time). Exclusive time is the time
spent in the method. Inclusive time is the time spent in the method plus the time spent in

any called functions.

4.3.3 Memory Usage

We measure memory usage running in background the dumpsys meminfo command on the
phone. We measure memory using the Proportional Set Size (PSS), as the Android documen-
tation ! suggests. It measures the app’s RAM use, including shared pages across processes.
All RAM pages that are unique to a process directly contribute to its PSS value, while pages
that are shared with other processes contribute to the PSS value only in proportion to the

amount of sharing.

4.3.4 Network Usage

We collect network usage using the tcpdump!! command on the phone. This approach
has been used by Gui et al. (2015). tcpdump captures packets from the Wi-Fi and cellular
connections. We use this tool via the Android command adb to capture the numbers of bytes
transmitted over the network connection. We redirect the output of this tool to a file that

we store on the phone.

4.3.5 Automation Process

To collect performance metrics of apps, we run each app under study and we play a particular
scenario (or test case). We run apps and play scenarios automatically to get measurements
for several runs without introducing variations in execution time due to user fatigue or
skillfulness. We run each app 20 or more times to get statistical results. To avoid any kind
of interference during the measures, we only run on the phone the essential Android services.
In addition, after each run, we uninstall the app under study and we clean the cache to keep

the phone in the same state between different apps and runs.

A description of the steps is given in Algorithm 1:, which we implement as a Python script.
For simplicity we include all the performance metrics in the same script but, in fact, we
collect power usage individually to avoid any impact of other metrics’” measurements on it.
We run all apps before moving to the next run. Thus, we reduce the chance that the cache

memory on the phone stores information related to the app run, which can cause the app to

10. https://developer.android.com/studio/profile/investigate-ram.html
11. http://www.androidtcpdump.com/
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run faster after some executions. Finally, we process the obtain data to generate a Comma
Separated Values (CSV) file that contains, for each app under study and run, the median
value of power, CPU, memory, and network usages, and the total energy consumption (sum

of the energy associated to each sample).

Algorithm 1: Collecting performance metrics of Android apps.

Input: list of apps under study, scenario of usage (or test cases) for each app, and number of runs

1: for each run do > At least 20 runs, to get statistical results
2: for each app do
3: Install app. > adb install app
4: Run app. > adb shell am start app
o: Start top command. > adb shell ’top -d 1 | grep app > cpu.txt’ &
6: Obtain PID of top command. > adb shell ps | grep -w top | awk ’print $2°
T Start dumpsys command. > adb shell dumpsys meminfo app | grep TOTAL > memory.txt’ &
8: Obtain PID of dumpsys command. > adb shell ps | grep -w dumpsys | awk ’print $2°’
9: Start tcpdump. > adb shell tcpdump -s O -n -B 30000 -i wlanO -w network.txt &
10: Obtain PID of tcpdump. > adb shell ps | grep tcpdump | awk ’print $2°
11: Start oscilloscope (using the LibTiePie library). > scp.start ()
12: Play scenario (or run test case). > monkeyrunner scenario (or adb shell am instrument ...)
13: Stop oscilloscope. > scp.stop()
14: Stop tcpdump. > adb shell kill -SIGTERM PID of tcpdump command
15: Stop dumpsys command. > adb shell kill -SIGTERM PID of dumpsys command
16: Stop top command. > adb shell kill -SIGTERM PID of top command
17: Stop app. > adb shell am force-stop app
18: Clean app files. > adb shell pm clear app
19: Uninstall app. > adb uninstall app
20: Download file containing network usage. > adb pull network.txt .
21: Delete file containing network usage. > adb shell rm network.txt
22: Download file containing memory usage. > adb pull memory.txt .
23: Delete file containing memory usage. > adb shell rm memory.txt
24: Download file containing CPU usage. > adb pull cpu .txt .
25: Delete file containing CPU usage. > adb shell rm cpu.txt
26: end for
27: end for

4.4 Data Analysis

We perform Wilcoxon rank sum tests (Hollander et Wolfe, 1973) to determine whether the
difference between performance metrics of two different variables is statistically significant.
We chose to use this test because we have one nominal variable (a modification or “treatment”
applied to an app or app method), one measurement value (a performance metric), and
because performance metric values are not normally distributed. We chose a p-value of
0.05. For the cases where there is a statistically significant difference (p-value < 0.05), we

compute the effect size measure Cliftf’s . It indicates the size of the effect of applying a
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“treatment” to a variable (Cliff, 2014). The effect size is small for 0.147 < § < 0.33, medium
for 0.33 < ¢ < 0.474, and large for § > 0.474 (Romano et al., 2006).
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CHAPTER 5 AN ENERGY-AWARE REFACTORING APPROACH

Similar to traditional desktop apps, mobile device apps age as a consequence of changes
in their functionality, bug-fixing, and of new features, which sometimes lead to the dete-
rioration of the initial design (Parnas, 1994). This phenomenon, known as software de-
cay (Eick et al., 2001), is manifested in the form of design flaws or anti-patterns (poor design

choices).

An example of anti-pattern is the lazy class, which occurs when a class has few responsibilities
in an app. A lazy class typically is comprised of methods with low complexity and is the
result of speculation in the design and—or implementation stage. Another common anti-
pattern is the blob class, also known as god class, which is a large and complex class that
centralizes most of the responsibilities of an app, while using the rest of the classes merely as
data holders. A blob class has low cohesion and hinders software maintenance, making code
hard to reuse and understand. There also are anti-patterns that could cause battery drain.
An example of such anti-pattern is binding resources too early class (Gottschalk et al., 2013).
It occurs when a class switches on energy-intensive components of a mobile device (Wi-Fi
or GPS) when they cannot interact with the user (for example, when the app is loading).
Because resource management is critical for mobile device apps, developers should avoid
these anti-patterns. Recently, researchers and practitioners have proposed approaches and
tools to detect (Marinescu, 2004; Moha et al., 2010) and correct (Tsantalis et al., 2008) anti-
patterns. However, these approaches only focus on object-oriented anti-patterns and do not

consider mobile development concerns.

In this chapter we want to show the impact of design and implementation choices on energy
consumption. We present EARMO, a novel anti-pattern correction approach that accounts
for energy consumption when refactoring mobile anti-patterns. First, we conduct a pre-
liminary study to analyze the impact of eight well-known object-oriented and mobile device
specific anti-patterns on energy consumption. Second, we propose EARMO to leverage infor-
mation about the energy cost of anti-patterns to generate refactoring sequences automatically.
We focus our research on a subset of Android apps, evaluating EARMO on a testbed of open-
source Android apps extracted from the F-Droid marketplace! (an Android app repository

of open-source Android apps).

1. https://f-droid.org
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5.1 Preliminary Study

Understanding if anti-patterns affect the energy consumption of mobile apps is important for
researchers and practitioners interested in improving the design of apps through refactoring.
Specifically, if anti-patterns do not significantly impact energy consumption, then it is not
necessary to control for energy consumption during a refactoring process. On the other hand,
if anti-patterns significantly affect energy consumption, developers and practitioners should
be equipped with refactoring approaches that control for energy consumption during the

refactoring process, in order to prevent a deterioration of the energy efficiency of apps.

With this preliminary study we want to check if the energy consumption of mobile device
apps with anti-patterns differs from the energy consumption of apps without anti-patterns.
But we also want to analyze whether certain types of anti-patterns lead to more energy

consumption than others.

5.1.1 Subject Object-oriented and Android Anti-patterns

We consider two categories of anti-patterns: object-oriented anti-patterns, and Android anti-
patterns. Next we present the details of the considered anti-patterns types an the refactoring
strategies used to remove them. We select these anti-patterns because they have been found in
mobile device apps (Hecht et al., 2015, 2016), and they are well defined in the literature with
recommended steps to remove them (Brown et al., 1998; Fowler, 1999; Gottschalk, 2013).

Object-oriented Anti-patterns

Blob class (BL) (Brown et al., 1998) is a large class that absorbs most of the functionality
of the system with very low cohesion between its constituents. Move method (MM) is the
strategy used to remove this anti-pattern, moving the methods that does not seem to fit in

the blob class abstraction to more appropriate classes (Seng et al. (2006)).

Lazy class (LC) (Fowler, 1999) is a small class with low complexity that do not justify their
existence in the system. Inline class (IC) is the strategy used to remove this anti-pattern,

moving the attributes and methods of this class to another class in the system.

Long-parameter list (LP) (Fowler, 1999) is a class with one or more methods having a long list
of parameters, specially when two or more methods are sharing a long list of parameters that
are semantically connected. Introduce parameter object (IPO) is the strategy used to remove
this anti-pattern. It extracts a new class with the long list of parameters and replace the

method signature by a reference to the new object created. Then access to this parameters
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through the parameter object.

Refused bequest (RB) (Fowler, 1999) is a subclass that uses only a very limited functionality
of the parent class. Replace inheritance with delegation (RIWD) is the strategy used to
remove this anti-pattern. It removes the inheritance from the RB class and replace it with

delegation through using an object instance of the parent class.

Speculative generality (SG) (Fowler, 1999) exists when there is an abstract class created to
anticipate further features but it is only extended by one class, adding extra complexity to
the design. Collapse hierarchy (CH) is the strategy used to remove this anti-pattern, moving
the attributes and methods of the child class to the parent, and removing the abstract

modifier.

Android Anti-patterns

Binding Resources too early (BE) (Gottschalk, 2013) refers to the initialization of high-
energy-consumption components of the device before they can be used. Mowve resource request
to visible method (MRM) is the strategy used to remove this anti-pattern, moving the method
calls that initialize high-energy consumption hardware to a suitable Android event. For ex-
ample, move method call for requestlocationUpdates, which starts GPS device, after the

app is visible to the app/user (OnResume method).

HashMap usage (HMU) (Hecht et al., 2016) exists when the map implementation HashMap
is used instead of ArrayMap, which is defined by Google as a more memory efficient map
implementation. Replace HashMap with ArrayMap (RHA) is the strategy used to remove
this pattern. It imports ArrayMap and replace HashMap declarations with the ArrayMap

implementation.

Private getters and setters (PGS) (Hecht et al., 2016) refers to the use of private getters and
setters to access a field inside a class. It decreases the performance of apps because of simple
inlining of Android virtual machine that translates this call to a virtual method called, which
is up to seven times slower than direct field access. Inline private getters and setters (IGS)
is the strategy used to remove this anti-pattern inlining the private methods and replacing
the method calls with direct field access.

5.1.2 Data Extraction and Analysis

In order to study the impact of anti-patterns on energy consumption, we download from
F-Droid 20 apps that respect our selection criteria: apps that do not require to have user-

name-anhd-password-for-specific websites, apps written in English to fully understand their
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functionality, apps that compile and do not crash in the middle of execution, and apps that
contain at least one instance of any of the anti-patterns studied. We detect anti-patterns us-
ing an automated approach called ReCon (Morales et al., 2017b). It also allows us to obtain
sequence of refactorings to remove anti-patterns, which can be applied using the Android Stu-
dio and-or the Eclipse refactoring-tool-support. We use these refactoring tools to minimize
human mistakes. In addition, we verify the correct execution of apps after each refactoring

is applied.

For each type of anti-pattern, there are three different apps containing an instance of the anti-
pattern. We refactor these apps to obtain versions without the anti-pattern. They are what
we call the refactored version of the apps. For each app we define a scenario that exercises
the code containing anti-patterns. The scenarios are generated with the main objective of
executing the code segment(s) related to the anti-patterns in the original version, and the
refactorings applied in the refactored version. We run each app and we play its corresponding
scenario while energy measurements are collected. We run 30 times each app to get median

energy consumptions.

Once energy measurements are collected, we statistically compare the energy consumption
between the original and refactored versions of the apps. Because we do not know beforehand
if the energy consumption will be higher in one direction or in the other, we perform a two-

tailed test and we estimate the differences of means between original and refactored versions.

5.1.3 Results

In total, we manually correct 24 anti-patterns inside the set of apps that make up our
testbed. We compute the percentage change in median energy consumption for an app a
after removing one instance of anti-pattern k at time using Equation 5.1, where E(a*) is the
energy consumption (in Joules) of app a after removing an anti-pattern k, E(a°") the energy
consumption of the original app, and med(.) is the median of the energy consumption values

of the 30 independent runs.

med(E(a*)) — med(E(a’"))

’y(E(ak),E(&ori)) — med(E(aori»

x 100 (5.1)

We show in Figure 5.1: the percentage change of the energy consumption after removing one
instance of the existing anti-patterns at time for each app under study. In seven instances
(30%) the differences are statistically significant, with effect sizes ranging from small to large.
Specifically, we obtained three apps with large effect size (two types of anti-patterns), two

cases-with-mediumseffect size; and one with small effect size. This fact suggests that different
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types of anti-patterns may impact the energy consumption of apps differently.

change in energy consumption (in %): [_1(0,2][_1(-2,0][](-4,-2] 8 (-6,-4] Il (-8,-6] M (- 10,-8]IM[-70,-10]

blackjacktrainer -0.33
calculator - -1.17 -0.90
gltron 1 -1.60*
kindmind - 0.68
matrixcalc | 0.56
monsterhunter A 0.57
mylocation -1.56
oddscalculator - X
prism 1 1.47 -0.03
Q  quicksnap -0.07 0.88
< SASAbus A -4.12
scrabble A -0.67
soundmanager - -838* | -596* |
speedometer -

stk . 0.38
sudowars A -0.82
swjournal A 2.21
tapsoffire -3.52
vitoshadm 1 -2.80*
words . -2.29*
BE BL HMU PGS LC LP RB SG
Anti-pattern

Figure 5.1: Percentage change in median energy consumption when removing different types
of anti-patterns. Negative values indicate a reduction of energy consumption after refactoring,
positive values indicate an increase of energy consumption. For the instances where the results
are statistically significant we add an “x” symbol.

Regarding object-oriented anti-patterns, we observe that removing LC reduces energy con-
sumption in app blackjacktrainer. This trend holds for apps tapsoffire and soundmanager
respectively, with the latter one having statistically significance and large effect size. In the
case of RB, two out of three apps show that removing the anti-pattern saves energy, and the
difference is statistically significant for vitoshadm. For the BL anti-pattern, all refactored
versions report a decrease in energy consumption, though the differences are not statistically
significant. Concerning LP and SG, both report a negative impact on energy consumption
after refactoring. While for LP, all the apps point toward more energy consumption, in the
case of SG, the energy consumption is increased in two out of three apps after refactoring. We
explain the result obtained for LP by the fact that the creation of a new object (the parame-
ter object that contains the long list of parameters) adds to some extent more memory usage.
For SG we do not have a plausible explanation for this trend. For both anti-patterns, the
obtained differences in energy consumption is not statistically significant, hence we cannot

conclude that these two anti-patterns always increase or decrease energy consumption.

Regarding Android anti-patterns, for HMU and PGS we obtain statistically significant re-

sults for two apps. For BE the result is statistically significant for one app. In all cases,
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apps that contained these anti-patterns consumed more energy than their refactored versions
that did not contain the anti-patterns. This finding is consistent with the recommendation
of Gottschalk et al. (2013) that advise to remove HMU, PGS, and BE from Android apps,
because of their negative effects on energy consumption. Note that the amount of energy
saved is influenced by the context in which the application runs. For example, SASAbus,
which is a bus schedule app, downloads the latest bus schedule at start, consuming a con-
siderable amount of data and energy. As a result, the gain in energy for relocating the call
method that starts the GPS device is negligible in comparison to the overall scenario. mylo-
cation is a simpler app that only provides the coordinated position of mobile users. This app
optimizes the use of the GPS device by disabling several parameters, like altitude and speed.
For this app, we observe a consistent improvement when the anti-pattern is removed, but in
a small amount. On the other hand, we have speedometer, which is a simple app as well,
that measures user’s speed but using high precision mode. High precision mode uses GPS
and Internet data at the same time to estimate location with high accuracy. In speedometer,
we observe a high reduction in energy consumption when the anti-pattern is corrected in

comparison with the previous two apps.

Based on this preliminary study, there is evidence to believe that binding resources too early,
private getters and setters, refused bequest, and lazy class anti-patterns can improve energy
efficiency in some cases. We do not find any statistically significant cases were removing an
anti-pattern increases energy consumption. Removing blob, long parameter list, and specula-
tive generality anti-patterns does not produce a statistically significant increase or decrease.
Anyway, the impact of different types of anti-patterns on the energy consumption of mobile

apps is not the same.

Energy Consumption Coefficient for each Refactoring Operation

Based on the results obtained we estimate the impact of each refactoring operation on energy
consumption. We define §FE (k) as the global refactoring energy consumption coefficient to
remove anti-pattern type k. We take three apps from our testbed for each type of anti-pattern
k and we compute 6 E(k) using Equation 5.2, where A* is the set of apps that were refactored

to remove a single instance of anti-pattern type k.

Y(E(a"), E(a))
100

OE(k) = med ( ) Va* € A (5.2)

We show in Table 5.1: the energy consumption coefficient d E'(k) for each refactoring opera-

tion. Note that for the MM refactoring, we did not use the energy consumption measured for
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the correction of BL, as correcting a BL requires many MM operations to be applied. Hence,
we measured the same apps used for BL with and without moving exactly one method to

estimate the effect of this refactoring.

Table 5.1: Energy consumption coefficient by refactoring type. Negative values indicate a
reduction of energy consumption after refactoring, positive values indicate an increase of
energy consumption.

Refactoring operation (k) SE(k)
Collapse hierarchy (CH) 0.0056
Inline class (IC) -0.0315
Inline private getters and setters (IGS) -0.0237
Introduce parameter object (IPO) 0.0047
Move method (MM) -0.0020
Move resource request to visible method (MRM)  -0.0412
Replace HashMap with ArrayMap (RHA) -0.0160
Replace Inheritance with delegation (RIWD) -0.0067

5.2 EARMO: Conceptual Sequence of Steps

Our approach is based on a search-based process where we generate refactoring sequences to
improve the design of an app. This process involves evaluating several sequences of refactoring
iteratively and the resultant design in terms of design quality and energy consumption. It
takes as input an app to refactor, its energy consumption for a given scenario, and an energy
coefficient for each refactoring strategy. It returns optimal refactoring sequences that remove
the maximum number of anti-patterns while minimizing the energy consumption of the app.

EARMO is comprised of three steps. They are summarized in Algorithm 2:.

Algorithm 2: EARMO approach.

Input: App to refactor (app) and the energy consumption of the app for a concrete scenario (Ep)
Output: Optimal set of refactoring sequences for app

1: AM = Code meta-model generation of app > It generates a light-weight representation of the code
2: RA = Code meta-model assessment of AM > It detects anti-patterns and generate a list of refactoring
3: Generation of optimal set of refactoring sequences using AM, RA, and Fjy > Search-based approach

In the first step (line 1), the approach builds an abstract representation of the mobile app’s de-
sign (a code meta-model). In the second step (line 2), the code meta-model is visited to search
for anti-pattern occurrences. Once the list of anti-patterns is generated, EARMO determines
a set of refactoring opportunities based on a series of pre- and post-conditions extracted
from the anti-patterns literature (Brown et al., 1998; Fowler, 1999; Gottschalk et al., 2013).
Insthesfinalstepy(lines3)pitsruns a multi-objective search-based approach to find the best legal
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sequence of refactorings that remove the maximum number of anti-patterns in the system
while improving the energy consumption of the app. In the following, we describe in detail

each of these steps.

5.2.1 Code Meta-model Generation

In this step EARMO generates a light-weight representation (a meta-model) of a mobile
app, using static code analysis techniques, with the aim of evolving the current design into
an improved version in terms of design quality and energy consumption. A code meta-model
describes programs at different levels of abstractions and provide methods to manipulate the
design model and generate other models. The objective of this step is to manipulate the
design model of a system programmatically. Hence, the code meta-model is used to detect
anti-patterns, apply refactoring sequences, and evaluate their impact in the design quality of

a system.

5.2.2 Code Meta-model Assessment

In this step we assess the quality of the code meta-model by identifying anti-patterns in its
entities, and determining refactoring operations to correct them. The correction of certain
anti-patterns requires not only the analysis of a class as a single entity, but also their rela-
tionship with other classes (inter-class anti-patterns). For example, to correct instances of
BL in an app, EARMO needs to determine information related to the number of methods
and attributes implemented by a given class, and compare it with the rest of the classes in
the system. Then, it needs to estimate the cohesion between its methods and attributes, and
determine the existence of “controlling” relationships with other classes. After performing
these inter-class analysis, EARMO can propose MM refactorings to redistribute the excess
of functionality from blob classes to related classes. Before adding a refactoring operation
to the list of candidates, EARMO validates that it meets all pre- and post-conditions for its
refactoring strategy to preserve the semantic of the code (Opdyke, 1992). For example, a
pre-condition is that we cannot move a method to a class where there is a method with the
same signature. An example of post-condition is that once we move a method from one class
to another, there is no method in the source class that has the same signature as the method

that was moved.
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5.2.3 Generation of Optimal Set of Refactoring Sequences

In this final step, EARMO finds different refactoring sequences that remove a maximum
number of anti-patterns while reduces the energy consumption of mobile apps. EARMO

uses EMO algorithms to obtain optimal refactoring sequences.

Solution representation

For EARMO a solution is a refactoring sequence. We represent a refactoring sequence as a
vector, where each element represents a refactoring operation to be applied. Each refactoring
operation is composed of several fields like an identification number (ID), type of refactoring,
the qualified name of the class that contains the anti-pattern, and any other field required to
apply the refactoring in the model. For example, in a MM operation we also need to store

the name of the method to be moved and the name of the target class.

Variation operators

For EMO algorithms we implement the cut and splice technique as crossover operator. It
consists in randomly setting a cut point for two parents and recombining with the elements
of the second parent’s cut point and vice-versa, resulting in two individuals with different

lengths. We provide an example in Figure 5.2:.

Parent P1
1. Select a 1d:701 1d:272 1d:897 1d:15 1d:71
. d . Type: Replace | Type: inline Type: inline Type: move Type: Intr.
random cut-point Hashmap with | getters and class method Param. Obj.
for each parent Arraymap setters Source class... J| Source class... | Source class...
Source class... | Source class...
-4— Cut-point 1 (X1)
Parent P2

-4—— Cut-point 2 (X2)

2. To obtain C1, |§?7T1Id < 1d:272 1d:897

take the. T);pe: Replace T);pe: inline Ty'pe: inline
refactorings of Hashmap with | getters and class

P1 before X1 and Arraymap setters Source class...
combine them Source class... | Source class...

with refactorings

of P2 after X2. Child C2

1d:15 1d:71

Type: move Type: Intr.
method Param. Obj.
Source class... | Source class...

3. Repeat the
same procedure
for child C2, but
starting with
parent P2

Figure 5.2: Example of cut and slice technique used by EARMO as crossover operator.
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For mutation, we consider the same operator used by Morales et al. (2016) that consists of
choosing a random point in the sequence and removing the refactoring operations from that
point to the end. Then, we complete the sequence by adding new random refactorings until
there are no more valid refactoring operations to add (operations that do not cause conflict

with the existent ones in the sequence). We provide an example in Figure 5.3:.

-4——— Cut-point (X)

1d:701 1d:272 1d:897 1d:15
1. Selecta Type: Replace | Type: inline Type: inline Type: move
random cut- Hashmap with | getters and class method
point (X) in Arraymap setters Source class... || Source class...

the sequence Source class... | Source class...

1d:701 1d:272
2. Remqve Type: Replace | Type: inline
refactorings Hashmap with | getters and
after X Arraymap setters
Source class... | Source class...
3.Addnew  [ig701 1d:272
refactormgs Type: Replace | Type: inline
after X until Hashmap with getters and
. Arraymap setters
Is not Source class... | Source class...
possible

Figure 5.3: Example of the mutation operator used by EARMO.

Objective Functions.

We define two objective functions to evaluate the quality and the energy consumption of a

solution, respectively.

The function to evaluate the quality of the design is DQ) =1 — #LEVCAT’ where NDC'is the
number of classes that contain anti-patterns, NC' is the number of classes, and N AT is the
number of different types of anti-patterns. The value of D), which is normalized between 0
and 1, rises when the number of anti-patterns in the app is reduced. A value of 1 represents
the complete removal of anti-patterns, hence we aim to maximize the value of D). This
objective function was introduced by Ouni et al. (2013). We follow this formulation because

it is easy to implement and computationally inexpensive.

To evaluate the energy consumption of an app after refactoring we define the following
formulation: let Ej be the estimated energy consumption of an app a, and r; a refactoring
operation in a sequence S = (r1,...,7,). We estimate the energy consumption of the app
resulting from the application of the refactoring sequence S to the app a using Equation 5.3,
where dE(r;) is the energy coefficient value of the refactoring operation r; to remove an anti-

pattern. These coefficient values were estimated in our preliminary study and summarized

www.manharaa.com



37

in Table 5.1:. We aim to minimize the value of E during the search process.

E(a) = Ey + zn:Eo x 6 E(r;) (5.3)

i=1

Note that we estimate the energy consumption of a refactoring sequence because measuring
in real-time can be prohibitive. It requires to apply each refactoring element of the sequence
in the code, compile it, generate the binary code and download it into the phone; all of these

steps for each time the search-based process requires to evaluate a solution.

In Algorithm 3:, we present a generic pseudocode for the EMO algorithms used by our
approach. The process starts by generating an initial population of refactoring sequences from
the meta-model assessment step (line 1). Next, for each solution, it applies the corresponding
refactoring sequence in the code meta-model and measures the design quality (number of anti-
patterns) and the energy saved by applying the refactorings included in the sequence (lines
3-8). The next step is to extract the non-dominated solutions (line 9). From line 10 to 21,
the main loop of the metaheuristic process is executed. The goal is to evolve the initial
population, using the variation operators described before, to converge to the Pareto optimal
front. The stopping criterion, which is defined by the software maintainer, is a fixed number

of evaluations. Finally, the optimal refactoring sequences are retrieved (line 22).

5.2.4 Output

As output, EARMO returns optimal refactoring sequences (a Pareto optimal front) in terms
of design quality and energy consumption. According to the concept of Pareto dominance,
every Pareto point is an equally acceptable solution of the multi-objective optimization prob-
lem (Miettinen, 1999), but developers might show preference over the ones that favors the
metric they want to prioritize. They could select the refactoring sequence that improves more
the energy consumption, or the one that improves the maintainability of their code. Other
developers might be more conservative and select solutions located in the middle of these
two objectives. Developers have the last word, and EARMO supports them by providing

different alternatives.

5.3 Case Study

We evaluate the effectiveness of EARMO at improving the design quality of mobile de-
vice apps while optimizing energy consumption. The quality focus is the improvement of

the design quality and energy consumption of mobile apps, through search-based refactor-
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Algorithm 3: Generation of optimal set of refactoring sequences in EARMO.

Input: Code meta-model generation and assessment (AM and RA) and energy consumption (Eg) of app
Output: Set of non-dominated solutions

1: Py = Generate initial population from RA

2: PF=10 > PF is the set of non-dominated solutions
3: for each S; € Py do > Evaluation of individuals (.5; is a refactoring sequence)
4 AM’ = clone AM

5 Apply sequence of refactorings S; in AM’

6: Compute design quality for solution S; using AM’

7 Compute energy consumption for solution S; using AM’ and Ejy

8

: end for
9: PF = non-dominated solutions in Py
10: t=1
11: while not stopping criterion do
12: P, = Apply variation operators to P;_1 > Generation of new individuals in the population
13: for each S; € P, do > Evaluation of individuals
14: AM’ = clone AM
15: Apply sequence of refactorings S; in AM’
16: Compute design quality for solution S; using AM'
17: Compute energy consumption for solution S; using AM’ and Eq
18: end for

19: PF = non-dominated solutions in (PF) U (P;)

20: t=t+1

21: end while

22: return PF > The set of non-dominated solutions (the Pareto optimal front)

ing. The perspective is that of practitioners interested in improving the design quality of
their apps while controlling for energy consumption, and researchers interested in develop-
ing automated refactoring tools for mobile apps. The context consists of the 20 Android
apps and anti-patterns studied in our preliminary study. Given an app, we use as input
for EARMO the energy consumption of the app and the energy coefficient of refactoring
strategies, both also computed in our preliminary study. The code meta-model is gener-
ated using Ptidej Tool Suite (Guéhéneuc, 2005). We select this tool suite because it has
more than ten years of active development and it is maintained in-house. We use three
multi-objective metaheuristics (MOCell, NSGAII, and SPEA2) for the generation of optimal
refactoring sequences. We choose them because they are well-known evolutionary techniques
that have been successfully applied to solve optimization problems including refactoring
(Harman et al., 2012b; Ouni et al., 2013).

Results

In order to assess the effectiveness of EARMO, we study to what extent the approach can

remove anti-patterns while controlling for energy consumption. We also examine what is the
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precision of the energy improvement reported by EARMO. Lastly, we study to what extent
is design quality improved by EARMO according to an external quality model.

The search-based approach has been implemented in jMetal, an object-oriented Java-based
framework for multi-objective optimization (Durillo et Nebro, 2011). We use number of eval-
uations as the stopping criteria. We empirically tried different number of evaluations in the
range of 1,000 to 5,000 and found 2,500 to be the best value. We use for each EMO algo-
rithm as selection operator the default one proposed by jMetal for each algorithm. We use
a default value of 100 individuals for population size, and we set the crossover and mutation
probabilities to 0.8. We selected these parameters using a factorial design and choosing the
best values in terms of two popular metrics, the hypervolume (Zitzler et Thiele, 1999b) and
the spread (Deb et al., 2002). Because the EMO algorithms employed are non-deterministic,
the results might vary between different executions. Hence, we run each metaheuristic 30
times, for each studied app, to provide statistical significance. As a result, we obtain three
reference Pareto front approximations (one per algorithm) for each app. From these fronts,
we extract a global reference front that combines the best results of each metaheuristic for

each app and, after that, dominated solutions are removed.

Concerning the particular problem of automated-refactoring, the initial size of the refactoring
sequence is crucial to find the best sequence in a timely manner. If the sequence is too
long, the probability of conflicts between refactorings rises, affecting the search process. On
the other hand, small sequences produce refactoring solutions of poor quality. To obtain
a trade-off between this two scenarios, we experimented running the EMO algorithms with
four relative thresholds: 25, 50, 75, and 100 percent of the total number of refactoring
opportunities, and found that 50 percent is the most suitable value for our search-based

approach.

Removal of Anti-patterns while Controlling for Energy Consumption

EARMO found 2.5 non-dominated solutions on average with a maximum of eight solutions
for one of the apps under study. Thus, for the studied apps, a software maintainer has ap-
proximately three different solutions to choose from. The number of non-dominated solutions
are the number of refactorings sequences that achieved a compromise in terms of design qual-
ity and energy consumption. We also observe that more than 65% of the apps contain more
than one solution. To have an insight on those apps, we present in Figure 5.4: the Pareto

front for apps where EARMO finds more than one non-dominated solution.

To evaluate the Pareto optimal solutions found by EARMO we compare the improvement in

design-quality-and-energy-consumption for each of them with respect to the corresponding
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Figure 5.4: Pareto front of apps with more than one non-dominated solution found by
EARMO for the case study. Fach point represents a solution (refactoring sequence) with
their corresponding values, design quality (z-azis) and energy consumption (y-azis). The
most attractive solutions are located in the bottom right of each plot, because they maxi-
mize design quality while minimizing energy consumption.
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original apps. We define design improvement (DI) as the delta of anti-patterns occurrences
between the refactored (a’) and the original app (a). It is computed using Equation 5.4,
where AC(a) is the number of anti-patterns in an app a with AC(a) > 0. The sign of DI
expresses an increment (+)/decrement (-) and the value represents the improvement amount

in percentage. High negative values are desired.

AC(a') — AC(a)

bHa) = —50

x 100. (5.4)

We define estimated energy consumption improvement (ET) as the improvement in the energy
consumption of an app a after refactoring operation(s). It is computed using Equation 5.5,
where F(a) is the energy consumption of an app a with E(a) > 0. The sign of EI expresses
an increment (+)/decrement (-) and the value represents the amount in percentage. High

negative values are desired.

E(a’) — E(a)

El(a) = E(a)

x 100. (5.5)
We highlight a median correction of 84% of anti-patterns and estimated energy consumption
improvement of 48%. We present, in Table 5.2:, the number of non-dominated solutions found
for each app (column 2), the minimum and maximum values with respect to DI (columns
3-4), and EI metrics (columns 5-6). The number of non-dominated solutions are the number
of refactorings sequences that achieved a compromise in terms of design quality and energy
consumption. We observe that the results for DI and ET metrics are satisfactory, and we

find that in nine apps EARMO reaches 100% of anti-patterns correction with a maximum
E1T of 89%.

We conclude that including energy-consumption as a separate objective when applying au-
tomatic refactoring can reduce the energy consumption of a mobile app without impacting

the anti-patterns correction performance.

Precision of the Energy Improvement Reported by EARMO

We perform an energy consumption validation experiment to evaluate the accuracy of EARMO
using our measurement setup. This is important to observe how close is the estimated energy

improvement compared to the real measurements.

For each app we do the following. First, we compute refactoring recommendations using
EARMO and implement the refactorings in the source code of the app. To validate the

estimations of EARMO, we play the role of a software maintainer who wants to prioritize
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Table 5.2: Minimum and maximum values of DI and ET for each app after applying EARMO.

Solutions DI EI
App Min. Max. Min. Max.
blackJacktrainer 1 -75 -75 -6.14 -6.14
calculator 5 -75 -93.75 -48.07 -53.55
gltron 2 -93.75  -100  -25.85 -26.32
kindmind 3 -80 -93.33 -18.42 -18.76
matrixcalculator 3 -33.33  -66.67  0.28 -0.67
monsterhunter 2 -81.63 -83.67 -43.95 -44.42
mylocation 1 -100 -100 -2.05  -2.05
oddscalculator 1 -100 -100  -14.64 -14.64
prism 2 -85.71  -100 -7.94  -9.18
quicksnap 2 -92.31 -96.15 -83.65 -84.88
SASAbus 1 -81.82 -81.82 -27.09 -27.09
scrabble 2 -85.71  -100 -12.36 -12.92
soundmanager 2 -94.44  -100 -35.36 -35.83
speedometer 1 -100 -100 -6.17  -6.17
stk 2 -83.33 -100 -11.05 -11.53
sudowars 8 -60.29 -76.47 -48.77 -63.93
swjournal 1 -100 -100 -5.67  -5.67
tapsoffire 3 -82.93 -87.8 -88.26 -89.21
vitoshadm 1 -100 -100 -3.57  -3.57
words 8 -75 -91.67 -56.83 -63.37

the energy consumption of his/her app over design quality. Second, we define a new scenario
for the app if we consider that the scenario used in the preliminary study do not reflect a
typical usage. The reason is that we want to reflect the actions that a user typically will
perform with an app, according the purpose of their creators. Third, we measure the energy
consumption of the original and refactored versions of the apps while the new scenario is
played. Then, we compute the difference between the obtained values for both versions, the
original one with anti-patterns and the refactored one. To get statistical results we run each

version of each app 30 times.

Concerning the accuracy of the energy estimation, EARMO values are more optimistic than
the actual measurements but in an acceptable level. If we compare the results obtained by
EARMO compared with the preliminary study, the energy consumption trend holds for all
the apps. However it is hard to make a fair comparison because in the preliminary study
we measure the effect of one instance of each anti-pattern type at a time, but in the energy
consumption validation of EARMO we apply several refactorings. Yet, the median error is

in acceptable level of 12%.

We also compute the percentage of battery charge that is consumed by each app using
Equation 4.1. Then, we use this information to compute the battery life using Equation 5.6,

where ET is the execution time of the app (in seconds). We consider the battery life of an
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app to be the time (in hours) that it takes to drain the battery if the scenario associated to

the app is continuously run.

ET x 100)/Battery,sage
Batteryrife' = ( ;é()oa T Yusag (5.6)

Finally, we calculate the average battery life for each app (refactored and original) and
subtracted these values to obtain the difference of battery life. We obtain that after applying
refactoring sequences proposed by EARMO, duration of the battery can be extended from a

few minutes up to 29 minutes.

Improvement of Design Quality According to an External Quality Model

We use the Quality Model for Object-Oriented Design (QMOOD) (Bansiya et Davis, 2002)
to measure the impact of the refactoring sequences proposed by EARMO on the design
quality of the apps. QMOOD defines six design quality attributes in the form of metric-
quotient weighted formulas that can be easily computed on the design model of an app,
which makes it suitable for automated-refactoring experimentations. Another reason for
choosing the QMOQOD quality model is the fact that it has been used in many previous works
on refactoring (O’Keeffe et Cinnéide, 2006; Ouni et al., 2015), which allows for a replication

and comparison of the obtained results.

Next, we present a brief description of the quality attributes used in this study. Formulas
for computing these quality attributes are described in Table 5.3:. Details about them can

be found in the original source (Bansiya et Davis, 2002).

— Reusability: the degree to which a software module or other work product can be used
in more than one software program or software system.

— Flexibility: the ease with which a system or component can be modified for use in
apps or environments other than those for which it was specifically designed.

— Understandability: the properties of a design that enables it to be easily learned and
comprehended. This directly relates to the complexity of the design structure.

— Effectiveness: the design’s ability to achieve desired functionality and behavior using
object-oriented concepts.

— FExtendibility: the degree to which an app can be modified to increase its storage or

functional capacity.

We compute the quality gain (QG) for each quality attribute and app using Equation 5.7,
where (), (a) is the quality attribute y for an app a, and @’ is the refactored version of the

app_a. Note that since the calculation of QMOOD attributes can lead to negative values in
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Table 5.3: QMOOD evaluation functions, where DSC is design size, NOM is number of
methods, DCC is coupling, NOP is polymorphism, NOH is number of hierarchies, CAM is
cohesion among methods, ANA is average number of ancestors, DAM is data access metric,
MOA is measure of aggregation, MFA is measure of functional abstraction, and CIS is class
interface size.

Quality attribute  Quality attribute calculation

Reusability -0.25 * DCC + 0.25 * CAM + 0.5 * CIS + 0.5 * DSC

Flexibility 0.25 * DAM - 0.25 * DCC + 0.5 * MOA +0.5 * NOP

Understandability -0.33 * ANA + 0.33 * DAM - 0.33 * DCC + 0.33 * CAM -0.33 * NOP - 0.33 * NOM - 0.33 * DSC
Effectiveness 0.2 * ANA + 0.2 * DAM + 0.2 * MOA + 0.2 * MFA 4+ 0.2 * NOP

Extendibility 0.5 * ANA -0.5 * DCC + 0.5 * MFA + 0.5 * NOP

the original design, it is necessary to compute the absolute value of the divisor.

Qy(d) — Qy(a)
|Qy(a)]

QG(Q,) = x 100 (5.7)

In general, the refactored apps report a median slight decrease that ranges from 0.9% to 4%
for reusability, understandability and flexibility. Concerning effectiveness we report a median
gain of 3.14%. Regarding extendibility we report a considerable median improvement of 41%.
We attribute this increment to the removal of unnecessary inheritance (through inline class,
collapse hierarchy and refused bequest refactorings). In fact, the extendibility function assigns
a high weight to metrics related to hierarchy. These are good news for developers interested
in improving the design of their apps through refactoring, as the highly-competitive market
of Android apps requires adding new features often and in short periods of time. Hence, if
they interleave refactoring before the release of a new version, it will be easier to extend the

functionality of their apps.

Overall, EARMO can improve the design quality of an app, not only in terms of anti-patterns

correction but also their extendibility and effectiveness.

5.4 Discussion

EARMO is a novel approach for refactoring mobile apps while controlling for energy con-
sumption. This approach supports the improvement of the design quality of mobile apps
through the detection and correction of object-oriented and Android anti-patterns. To assess
the performance of EARMO, we implement our approach using three EMO algorithms and
we evaluate it on a benchmark of 20 free and open-source Android apps, having different

sizes and belonging to various categories.

The results of our empirical evaluation show that EARMO can propose solutions to remove a
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median of 84% of anti-patterns, with a median execution time of less than a minute. We also
evaluate the overall design quality of the refactored apps in terms of five high-level quality
attributes assessed by an external model, and report gains in terms of understandability,
flexibility, and extendibility of the resulting designs. We also quantify the battery energy
gain of EARMO and we find that in a multimedia app, when the proposed scenario is
executed continuously until the battery drained out, EARMO can extend battery life by up
to 29 minutes. The benefits of improving design quality of the code, and potentially reducing
the energy consumption of an app should not be underestimated. Battery life is one of the
main concerns of mobile device users and every small action performed to keep a moderate
energy usage in apps is well appreciated. Even if there is not a noticeable gain in energy
reduction, software maintainers are safe to apply refactoring recommendations proposed by

EARMO without fearing to introduce energy leaks.

From this study we obtain that the Android anti-patterns studied have a negative impact
on the energy consumption of apps. One of these anti-patterns exist when developers use
the HashMap implementation instead of ArrayMap. Although Android offers ArrayMap and
more map implementations to choose from, the official documentation is ambiguous about
the performance benefit of using these specific implementations. This fact motivates the next
chapter, where we study the use of map data structures by Android developers, we conduct
a survey to assess developers’ perspective on Java and Android map implementations, and
we perform an experimental study comparing their performance to conclude with guidelines

for choosing among these map implementations.
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CHAPTER 6 GETTING THE MOST FROM MAP DATA STRUCTURES

In the previous chapter, we obtained that developers can improve energy consumption by
replacing in their apps a Java map implementation by an Android map implementation. A
map is a data structure that is commonly used to store data as key—value pairs and retrieve
data as keys, values, or key—value pairs. Although Java offers different map implementation
classes, Android SDK offers other implementations supposed to be more efficient than the
traditional HashMap: ArrayMap and SparseArray variants (SparseArray, LongSparseArray,

SparselntArray, SparseLongArray, and SparseBooleanArray).

The Android documentation states that “ArrayMap is designed to be more memory efficient
than a traditional HashMap”'. When keys are defined as integer primitive types, the doc-
umentation also states that “Sparsedrray is designed to be more memory efficient than
HashMap to map integers to objects”?. The same is stated about LongSparseArray and long
primitive types used as keys®. When keys are defined as integer primitive types and val-
ues are defined as integer, long, or boolean primitive types, the documentation also states
that SparseIntArray?, SparseLongArray®, and SparseBooleanArray®, respectively, are
designed to be more memory efficient than a traditional HashMap. Android Studio, the of-
ficial Android Integrated Development Environment (IDE), warns “Use new SparseArray

instead new HashMap<Integer,Object>() for better performance” (a similar warning is also

given for SparseArray variants). Hence, ArrayMap and SparseArray variants should be pre-
ferred over HashMap, at least for maps containing up to hundreds of elements according to
Android developers’ reference documentation. For ArrayMap and SparseArray variants the
documentation claims that “this implementation is not intended to be appropriate for data
structures that may contain large number of items. It is generally slower than a traditional
HashMap”.

Yet, the documentation is vague because (1) it does not provide supporting evidence and
quantitative information about efficiency and (2) although it discourages their use in maps
containing large number of elements, it does not provide more precise numbers (for example,
performance information and-or threshold levels to consider). Consequently, although the

current documentation raises the awareness of developers about the advantages and limita-

https://developer.android.com/reference/android /util/ArrayMap.html
https://developer.android.com/reference /android /util/SparseArray.html
https://developer.android.com /reference/android /util/LongSparseArray.html
https://developer.android.com/reference/android /util/SparseInt Array.html
https://developer.android.com/reference/android /util/SparseLongArray.html
https://developer.android.com /reference/android /util/SparseBooleanArray.html
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tions of map implementations, it does not provide them concrete evidences that could be
used to make informed decisions about the implementations that are the most suitable for
their apps. Expressions such as “large number” and “generally slower” are vague and they
do not help developers at all. In addition to the previous, the documentation says nothing
about energy consumption and neither about performance for different map-related opera-
tions and data sizes. Saving CPU and memory is a major concern for users who own low end
mobile devices. But energy is also a major concern of users wanting to increase battery life.
Mobile device app developers want to develop efficient apps but they need more information

for choosing among Java and Android map implementations.

In this chapter we perform an experimental study comparing HashMap, ArrayMap, and
SparseArray variants map implementations in terms of CPU time, memory usage, and en-
ergy consumption. Before, we study the use of map implementations by Android developers
in two ways: we perform an observational study of 5,713 Android apps, and we conduct a
survey to assess developers’ perspective on Java and Android map implementations. Thus,
our goal is to know more about the usage of Android map implementations in real Android
apps and conclude with guidelines for choosing among map implementations regarding their
performance. Thus, developers can make informed decisions about the map implementations

to use in their apps.

6.1 Observational Study

We study usage patterns of Android developers of Java map implementations and the Android
map implementations ArrayMap and SparseArray variants. We conduct this study to analyze
the prevalence of map implementations through an observational study of Android apps
available on GitHub.

We select from GitHub (repository queried and accessed December, 2016) all the projects
that are available in the official Android marketplace as Android apps (all the projects that
contain a link to the Google Play marketplace in their README.md file). We choose open-
source apps because we can then analyze their source code to study the prevalence of map
implementations. Then, we develop a Python script to select and download, automatically,
the zip file containing the source code of each existing Android project from GitHub. Thus,

we obtain 5,713 Android apps.

We also develop a Bash script to process the source code of all the apps looking for occurrences
of general-purpose Java map implementations (HashMap, LinkedHashMap, and TreeMap) and

the ones under study offered by Android (ArrayMap and SparseArray variants). This Bash
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script uses the grep command to search for occurrences of the map implementations under
study. We manually validated the results and we found four different types of false positives:
(1) apps that defined a data structure named ArrayMap which implements the Map interface,
(2) apps that used a TPL named ArrayMap, (3) apps that contained one or more strings
containing text matching our patterns, and (4) apps that contained comments with text
matching our patterns. We have manually checked true positives (TP), false positives (FP),
and false negatives (FN) for each map implementation and projects under study. We obtaine
T ) is 93.46% and the recall (755) 100%. Thus, we
consider that our Bash script perform well for our observational study, concerning the apps

that, on average, the precision (
under study.

Results

We obtain that, over 5,713 apps, 1,713 (30%) apps have at least one occurrence of any Java
map implementation. For ArrayMap and SparseArray variants, 419 (7%) apps have one or
more occurrences of these map implementations. In total, over 5,713 apps, 2,132 (37%) use
any of the studied map implementations. From now on, in this section, percentages are given

with respect to this number.

We find that HashMap is the most used Java map implementation with 1,640 apps (77%) while
the others are used less often. We obtain that 282 (13%) apps use LinkedHashMap and 179
(8%) use TreeMap. Note that different map implementations can be used in the same app.
Concerning Android map implementations, we find that ArrayMap and SparseArray variants
are rarely used by Android developers. Only 19 (1%) and 413 (7%) apps use ArrayMap or

any variant of SparseArray, respectively.

Table 6.1: shows the number and the percentage of apps that have one or more occurrences
of any combination of the Java and Android map implementations. Second column shows
the number and percentage of apps that have one or more occurrences of ArrayMap and one
or more occurrences of a Java map implementation. Third column is similar to the previous
one but for SparseArray variants. Last column shows the number and percentage of apps
that have one or more occurrences of both ArrayMap and any variant of SparseArray map
implementations and one or more occurrences of a Java map implementation. As it is shown,
ArrayMap and SparseArray variants are used in combination to HashMap. For SparseArray
variants it makes sense, because these map implementations are used when keys and-or
values are primitive types while HashMap can be used to store non-primitive types as keys
and—or values. On the contrary, ArrayMap could be used as a replacement for HashMap but
we find that only five (0.23% over 2,132 or 0.30% over the 1,640 apps using HashMap) apps
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use exclusively ArrayMap instead of HashMap.

Table 6.1: Number and percentage of Android apps having one or more occurrences of any
combination of the Java and Android map implementations.

Android map implementation

Java map implementation ArrayMap SparseArray variants Both

TreeMap 3 (<1%) 46 (2%) 2 (<1%)
LinkedHashMap 4 (<1%) 100 (5%) 3 (<1%)
HashMap 14 (<1%) 314 (15%) 8 (<1%)

The Android documentation claims that SparseArray variants have a better memory per-
formance than HashMap and, for this reason, Android Studio suggests to replace HashMap by
SparseArray variants. Because we find that HashMap is the most used map implementation
we also study if Android developers adopt the HashMap implementation when keys and-or
values are defined as primitive types. We develop another script to process the source code of
apps looking for usages of the HashMap implementation using primitive types as keys and-or
values. From the 1,640 apps using the HashMap implementation, 332 (20%) of these apps use
integers as keys, 64 (4%) use longs as keys, 89 (5%) use integers as keys and values, 12 (<1%)
use integers as keys and longs as values, and 13 (<1%) use integers as keys and booleans as
values. However, in that cases, Android recommends to replace HashMap with SparseArray,
LongSparseArray, SparselntArray, SparselLongArray, and SparseBooleanArray, respec-

tively, for better memory performance.

6.2 Developers’ Perspective: a Survey

We want to know why developers mostly select the Java map implementation HashMap in-
stead of ArrayMap and SparseArray variants. Particularly in the cases where the Android
documentation advises the opposite. We assume that this lack of use is due to developers’
reluctance to try new implementations. But it is also probably due to their lack of knowl-
edge about the possible advantages in terms of performance of switching to ArrayMap or any
variant of SparseArray. We get details about developers’ perspective with respect to map
implementations conducting an on-line survey. All questions are optional and the survey is

anonymous to encourage developers to answer (Tyagi, 1989).

We consider the 1,744 apps that use HashMap, ArrayMap, and—or any variant of SparseArray.
We contacted those project’s owners that made their email address publicly available in
GitHub. The total amount of emails sent was 656. We surveyed these 656 developers and
118 (18%) responded to our survey. It is considerably larger than the typical 5% answer
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rate obtained in questionnaire-based software engineering surveys (Singer et al. (2008)). The
survey was available on-line from December 2016 to January 2017. Participants in our survey
are from 35 different countries around the world. The majority of them is from USA (17,
14%), India (15, 13%), and Spain (seven, 6%). Of all 118 participants: 93 (79%) have up to
four years of experience developing mobile apps, 101 (86%) participants declare to use Java

as primary programming language, and 97 (82%) participants declare to use Android Studio
as IDE.

The on-line survey have 14 questions: four on the usage of map implementations, five on the
participants’ familiarity with Android map implementations, one about importance of perfor-
mance metrics, and four on the participants’ background and experience. All the questions
have a closed set of answers from which a participant selects, while two of them include an
additional field for open comments. None of the questions are mandatory and participants
are allowed to drop out at any time. The survey consists on four different sections asking
about the use of map implementations, the familiarity with map implementations offered by
Android, the importance of different performance metrics, and participants’ profile. We use
for responses a dichotomous scale (yes/no) or Likert scales with values from 1 (never) to 5
(every time). When the question is related to importance magnitude we use a similar scale
with values from 1 (not important) to 5 (very important). For questions about familiarity we

use the same scale with values from 1 (not at all familiar) to 5 (extremely familiar).

The survey operates on a self-selection principle. It means that the results might be skewed
towards developers who are willing to answer the survey, but avoiding the self-selection
principle is not feasible in practice. Question-wording effect might bias respondents towards
one object if there is not enough context when comparing different objects under the same
conditions. To counteract the possible question-wording effect, we take care to make questions

as specific and concrete as possible to discard leading, loaded, or double-barreled questions.

Results

Demographic and experience information about participants was reported previously but
results for the other three sections are presented next. For Likert scale questions we use
diverging stacked bar charts to show the frequency of responses (in percentage). Replies
are positioned horizontally, so “low” responses are stacked to the left of a vertical baseline
and “high” responses are stacked to the right of this baseline. We consider as baseline or
“neutral response” the midpoint of the scale (value 3). For each stacked bar we also add the
percentage of low, neutral, and high responses. In addition, on the right, we also show the

total number of participants who answered each of the questions. In all the questions we
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obtained more than 110 responses (over 118 participants).

Use of Map Implementations

We ask participants the frequency of usage of the Java map implementations TreeMap,
LinkedHashMap, and HashMap. Figure 6.1: summarizes the participants’ responses. As it
is shown, HashMap is the most often used Java map implementation (80% of participants

responded almost every time or every time).

HashMap 2% 18% 80% 116
1

LinkedHashMap 52% 36% 12% 115
I

TreeMap 67% 27% 5% 113
|

-100 -50 0 50 100
Percentage

Response never  almostnever  occasionally  almost every time [ every time

Figure 6.1: Participants’ responses about the usage of most popular Java map implementa-
tions.

Concerning map-related operations (insertion, iteration, random query, and deletion), we
ask participants to rate them according to their importance in their codes. Figure 6.2: sum-
marizes the participants’ responses. For insertion, iteration, and random query operations,
more than 70% of the participants respond moderately important or very important. For the
deletion operation, 52% of the participants consider it as an important operation while 27%

of the participants have a neutral opinion about it.

Regarding the iteration operation we ask developers about the way of iterating through map
structures. We receive 118 responses from participants: 94 (80%) of these participants select
for-Each loop instead of the Iteration pattern, which is selected by 24 (20%) participants. In
addition we ask if the iteration is used over the key—value pairs, the set of keys, or the set
of values. We receive 118 responses: 59 (50%) participants select key—value pairs, 41 (35%)
choose the set of keys because they get the value mapped to each key using the get method,

and 18 (15%) select the set of values because they are not usually interested in keys.
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74% 118

toraion| o | 1o - -
50

Insertion 8% | 19%

71% 117

Query 15% I 15%
Deletion 21% I 27%

-100 -50 0
Percentage

52% 117

100

Response .not important  slightly important  neutral  moderately important.very important

Figure 6.2: Participants’ responses about importance of map-related operations.

Familiarity with Android Map Implementations

In the second section of the survey, we ask about the familiarity of developers with the
Android map implementations ArrayMap and SparseArray. We focus on SparseArray and
not on the other variants because they are used less often. Figure 6.3: summarizes the
participants’ responses. For ArrayMap, 55% of participants respond moderate familiar or
extremely familiar. For SparseArray, 27% of participants respond moderate familiar or
extremely familiar. Half of the participants respond that they are not at all familiar of

slightly familiar with SparseArray.

[
ArrayMap 35% . 10% 55% 118
|
SparseArray 50% . 23% 27% 118
|
-100 -50 0 50 100

Percentage

Response . not at all familiar  slightly familiar ~ somewhat familiar  moderate familiar. extremely familiar

Figure 6.3: Participants’ responses about familiarity with Android map implementations.

Since ArrayMap was introduced in Android API 19, developers from early versions of Android
or even those that want to provide compatibility backwards may opt for not switch to this

droid offers an utility class android.support.v4.util that
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allows to use ArrayMap in early Android versions. We ask developers to know if they are
aware of this class. We receive 118 responses from participants, from which 49 (42%) are
aware. The rest, 69 (58%), could hesitate to use it if they want to bring compatibility back
to previous versions, like one respondent says: “My app is an uncommon case, I support all

the way back to API level 8... I do however use SparseArray map, as it is available since

API 17

With respect to SparseArray, we ask participants if they know that it is designed to be more
efficient than HashMap when keys are integers. This question is answered by 118 participants
from which 52 (44%) confirm this fact while the rest 66 (56%) answer no.

We ask participants if they are willing to replace HashMap with any of the map implementa-
tions provided by Android, if they offer better performance. We receive 118 responses from
participants to this question from which 102 (86%) of these participants answered yes. To
the 16 (14%) remaining participants, we ask why they chose no. In general, they answer
that they use what they know and they fear of learning or using new structures wrong. An-
other respondent says that (s)he is concerned by the size of the app’s APK, because adding
the Android library would increase sizes. In addition, another respondent is worried about
portability of code when Android libraries are included. We are more concrete and we also
ask if they are willing to substitute HashMap with SparseArray when integers are used as
key in map data structures. We receive 118 responses from participants to this question:
107 (91%) of these participants said yes and 11 (9%) no. When we ask about the reason,
one participant says that “the replacement effort may be huge because they have different

interfaces”.

Importance of Performance Metrics

Finally, we ask participants to rank performance metrics (CPU time, memory usage, and
energy consumption) according to the weight that they give when choosing a map implemen-
tation. Figure 6.4: summarizes the participants’ responses. As it is shown, more than 70% of
the participants respond moderately important or very important for CPU time and memory
usage. About energy consumption, 43% of the participants respond that this performance

metric is important while 27% of the participants have a neutral opinion about it.

6.3 Experimental Study

In our observational study we find that HashMap is the most used map implementation. From

the survey we conclude that developers are not aware of the cost of selecting map implemen-
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CPU 9% I 17%

Memory 9% I 13% - 78% 116
Energy 30% . 27% . 43% 116

|
-100 -50 0 50 100
Percentage

Response .not important  slightly important  neutral  moderately important.very important

Figure 6.4: Participants’ responses about importance of performance metrics when choosing
a map implementation.

tations. For this reason, developers are reluctant to use new map implementations and they
use what they know that works. We believe that if developers are provided with concrete
results of the performance of maps in terms of critical performance metrics (e.g., CPU time,
memory usage, and energy consumption), they will be able to make informed decisions.
Consequently, we perform an experimental study about the performance of HashMap, the
most popular Java map implementation, and ArrayMap, a map implementation proposed by

Android as a replacement for HashMap.

In addition, as we find in our observational study, 20% of the apps using HashMap use integers
as keys, 4% use longs as keys, 5% use integers as keys and values, <1% use integers as
keys and longs as values, and <1% use integers as keys and booleans as values. In that
cases the Android map implementations SparseArray, LongSparseArray, SparseIntArray,
SparseLongArray, and SparseBooleanArray are suggested by Android as more efficient map
implementations. Because of this, we also study the performance of SparseArray variants

map implementations.

Although Android proposes SparseArray variants as a replacement for HashMap, nothing is
said about the usage of ArrayMap for primitive type keys. For this reason we also compare

the performance of ArrayMap and SparseArray variants.

Thus, we analyze the performance of HashMap, ArrayMap, and SparseArray variants in terms
of CPU time, memory usage, and energy consumption. We analyze these map implementa-

tions for different data sizes and for four operations: insertion, iteration, random query, and

deletion.
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6.3.1 Design

We run experiments with HashMap, ArrayMap, and SparseArray variants considering 30
different data sizes in the range [1,80000]. The Android documentation says that ArrayMap
and SparseArray variants are not intended to be appropriate for data structures that may
contain large numbers of items. Because “large” is a vague quantity, we use as upper bound
for data size a quantity 15 times larger than the one used by Hasan et al. (2016). Thus, we
want to know how the performance of map implementations is affected when up to 80,000
elements are used in map data structures. For all the map implementations we use the default
initial capacity and the default load factor value of 0.75 for HashMap, as it is proposed in the

Java documentation.

Because SparseArray variants are designed to be used with specific primitive type keys,
we compare them with respect to HashMap and ArrayMap setting the same primitive types.
However, we also compare HashMap and ArrayMap implementations using objects (strings) as
keys, instead of primitive types. Thus, we analyze 17 different map implementations. They
are shown in Table 6.2:. First column contains the specific types used as keys and values for
the map implementations shown in second column. Third column contains the syntax for

the declaration of each map implementation.

Table 6.2: Subject map implementations for the experimental study.

Types for keys and values Map implementation  Declaration

String keys and integer values HashMap HashMap<String, Integer>()
ArrayMap ArrayMap<String,Integer>()

Long keys and integer values HashMap HashMap<Long, Integer> ()
ArrayMap ArrayMap<Long, Integer>()
LongSparseArray LongSparseArray<Integer>()

Integer keys and integer values  HashMap HashMap<Integer,Integer>()
ArrayMap ArrayMap<Integer,Integer>()
SparseArray SparseArray<Integer> ()
SparseIntArray SparseIntArray()

Integer keys and long values HashMap HashMap<Integer,Long>()
ArrayMap ArrayMap<Integer,Long>()
SparseArray SparseArray<Integer,Long>()
SparseLongArray SparseLongArray ()

Integer keys and boolean values HashMap HashMap<Integer,Boolean> ()
ArrayMap ArrayMap<Integer,Boolean> ()
SparseArray SparseArray<Integer,Boolean> ()

SparseBooleanArray SparseBooleanArray()

In our experiments we use four different operations over these map implementations. For
each of the 30 data sizes used, map implementation, and operation, we collect performance

metrics. We now explain detailed each of the four operations:

www.manaraa.com



o6

— Insertion. We create the data structure and we fill it inserting the number of elements
desired. The insertion is done using the put method of the map implementations.

— lteration. We create the data structure and we fill it inserting the number of ele-
ments desired. After that, we iterate, with a for-Each loop, over each Entry using
the entrySet method of the HashMap and ArrayMap implementations. We use this
approach to iterate over the elements of map data structures because, regarding our
survey, it is extensively used by developers. However, SparseArray variants do not
offer an entrySet method. We iterate over these implementations by modifying the in-
dex between zero and the number of elements. We obtain the key and value from each
indexed key-value mapping using the methods keyAt and valueAt of SparseArray
variants, respectively.

— Random query. We create the data structure and we fill it inserting the number of
elements desired. Then, using the get method of the map implementations, we return
the values to which the specified key of N random elements is mapped. Here, N is the
data size of the data structure. To make a fair comparison, the same seed is used for
all the data structures. Therefore, the same sequence of random numbers is always
generated.

— Deletion. We create the data structure and we fill it inserting the number of elements
desired. Then, we iterate over the data structure removing one element at time.
We remove elements (accessing by key) using the remove method of the HashMap and

ArrayMap map implementations, and the delete method of the SparseArray variants.

Next, we explain the way CPU time, memory usage, and energy consumption are collected.
For each of these performance metrics we use a different approach and various scripts devel-

oped by us.

CPU Time

We create an Android app for each map implementation which runs the four operations while
it collects execution traces using the Android profiler. Execution traces are used to get the
CPU time associated to each operation. We run the experiments in an automatic way using
a Python script. It uses as input a text file specifying, in each line, the map implementation
and the data size to use. Considering the first parameter, the map implementation, the script
runs the corresponding Android app, which receives as a parameter the data size. When a
tap event is detected on the screen, the Android app runs the insertion, iteration, random
query, and deletion operations while the app is profiled using the Android debugger. After

these actions are completed, the resulting execution traces are saved on the phone and then
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transferred to a server for backup and processing. Algorithm 4: shows the pseudo-code of
our approach to measure CPU time of map implementations. Because we are analyzing
17 map implementations and 30 data sizes, we run 510 (17 x 30) experiments to get CPU

measurements.

Algorithm 4: Collection of CPU time for map implementations.

1: for each map implementation and data sizes in input file do
2 Install app of the current map implementation (using adb).
3 Start app passing the data size as parameter (using adb).
4: Wait to load the app completely.

ot Touch the screen to run the experiment (using adb).

6 Wait until experiment is finished.

7 Download execution traces from the phone (using adb).
8: Remove execution traces from the phone (using adb).

9: Stop the app (using adb).
10: Clean the app data (using adb).
11: Uninstall the app (using adb).
12: end for

For each data size and map implementation, we obtain one execution trace per operation
(insertion, iteration, random query, and deletion). Using a Bash script and the Android
dmtracedump ' command, we process execution traces to generate a CSV file containing the
CPU time of each independent experiment. Execution traces generated by the Android
profiler show both the inclusive and exclusive CPU times (as well as the percentage of the
total time). Exclusive time is the time spent in the method. Inclusive time is the time spent
in the method plus the time spent in any called functions. We use inclusive CPU time as
CPU usage.

Memory Usage

We create an Android app for each map implementation to measure memory usage. Each app
runs insertion operations over the corresponding map data structure and reports the memory
difference before and after the insertion of elements. The Android app does the following: (1)
get the amount of memory (in bytes) used by the Java Virtual Machine, (2) create and fill the
corresponding data structure, (3) get the current amount of memory (in bytes) used by the
Java Virtual Machine (using the methods freeMemory and totalMemory offered by the class
Runtime), (4) calculate the difference between both memory values, and (5) save the resulting
amount of memory in a text file on the phone. Thus, the generated file contains the memory

used by the data structure, expressed in bytes. We use a Python script to collect memory

7. https://developer.android.com /studio/profile/traceview.html
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usage of the studied map implementations automatically. This script uses as input a text
file specifying, in each line, the map implementation to use and the data size. Considering
the first parameter, the map implementation, the script runs the corresponding Android app
that receives as parameter the data size of the map data structure. Algorithm 5: shows the
pseudo-code of our approach to measure memory usage of map implementations. We are

analyzing 17 map implementations and 30 data sizes, so we run 510 (17 x 30) experiments.

Algorithm 5: Collection of memory usage for map implementations.

1: for each map implementation and data sizes in input file do
2 Install app of the current map implementation (using adb).
3 Start app passing data size as a parameter (using adb).

4: Wait to load the app completely.

5: Touch the screen to run the experiment (using adb).

6: Wait until experiment is finished.

7 Download the file with information about memory usage (using adb).
8: Stop the app (using adb).

9: Clean the app data (using adb).

10: Uninstall the app (using adb).

11: end for

Energy Consumption

We design a parametrized Android test suite for each map implementation with four Android
test cases, one for each operation. The data size is considered as a parameter of each test
case. We measure energy consumption in our phone while we run these test cases. Using
Android test cases allows us to run experiments turning the screen off, which removes the
impact on energy consumption because the screen. It also allows us to stop the measurement
process automatically when a test case finished. We run automatically these Android test
cases using a Python script. It reads an input text file specifying, on each line, a test case
to be run. A test case is defined by the name of a map implementation, the operation to
run, and the data size. Thus, a line “ArrayMap INSERTION 1,000” means that the test case
inserts 1,000 elements in an ArrayMap data structure. Algorithm 6: shows the pseudo-code
of our approach to measure energy consumption of map implementations. We analyze 17
different map implementations, four different operations, and we use 30 different data sizes.
In total we run 2,040 (17 x 4 x 30) different test cases.

6.3.2 Data Analysis

We run experiments 20 times to obtain statistical confidence. Hence, we run 20,400 (510 x

202 rexperimentsiforcollecting both CPU time and memory usage. We run 40, 800 (2, 040 x
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Algorithm 6: Collection of energy consumption for map implementations.

1: for each Android test cases in input file do

2 Compose test case name.

3 Start oscilloscope to measure energy consumption.
4: Run Android test case (using adb).

5 Stop oscilloscope.

6: end for

20) Android test cases for energy measurements. Overall, the collection of performance
metrics took around 800 hours (over five weeks) of continuous execution time and resulted
in over 600 GB of raw data.

A Wilcoxon rank sum test is carried out to check if the difference observed between the
values of the performance metrics is significant. In this case, the null hypothesis is that the
distribution of performance metrics of the HashMap implementation and performance metrics
of ArrayMap or SparseArray variants differ by a location shift of p (the average value). We
consider the difference to be significant if the obtained p-value is lower than a = 0.05. In
addition, when the comparison is significant, we compute the effect size using the Cliff’s ¢

function.

6.3.3 Results

For each performance metric and map-related operation, we compute for each data size the
median value of performance metrics over the 20 runs. Figures 6.5:, 6.6:, 6.7:, 6.8:, and 6.9:
show the median CPU time, memory usage, and energy consumption for each map imple-
mentation, data size, and operation. In addition, for each pair of map implementations we
compute the average difference of the median values previously computed for each data size.
CPU time is expressed in milliseconds (msec.), memory usage in kilobytes (kB), and energy

consumption in Joules (J).

Performance of HashMap and ArrayMap

First, we compare both map implementations with object keys and primitive type values.

Then, we compare HashMap and ArrayMap with primitive type keys and primitive type values.

Object keys and primitive type values.

HashMap is faster than ArrayMap for iteration, random query operations, and deletion op-
erations. However ArrayMap seems a bit faster than HashMap for insertion operations. We

observe that ArrayMap is, on average, 31 msec. (1%) faster for insertion operations. On the
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Figure 6.5: Performance metrics of map implementations using string keys and integer values,
by map-related operation and data size.
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Figure 6.6: Performance metrics of map implementations using long keys and integer values,
by map-related operation and data size.
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Figure 6.7: Performance metrics of map implementations using integer keys and integer
values, by map-related operation and data size.
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Figure 6.8: Performance metrics of map implementations using integer keys and long values,
by map-related operation and data size.
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» HashMap«<Integer,Boolean> 4 ArrayMap<Integer,Boolean> # SparseArray<Boolean> =+ SparseBooleanArray

CPU Memory Energy
5000-

10000- 1.10-
8000- x‘“ - 1.05- 5
6000- 8 1.00- 8
4000- g 0.95- g
2000- 4000- 0.90-
0- 0.85-
7000- 1.20-
6000- 1.15-
5000- e 1.10- —
4000- g 1.05- g
3000- = 3000- 1.00- B
2000- 3 0.95- S
1000- =  0.90-
0- 2  085-
12000- g 13
10000- 8 Looo- 1.2- AAx‘ 5
8000- § 11 e §
6000- ' =
e} e}
4000- & 1.0 il
i < <
2000 0.9
0.
35000- 1000- 40 A
30000- A" A,l
25000+ A 30- % o
20000- L e A pe
] A £ 2 20- » 2
15000 e Pl -
A e = A =
10000- + 10, ;ﬁ’*
5000- ! 0-
0- B O.Q‘ﬁ.’m
000000 | OO0 DO DO | OO O0D OO
NEOANANAMAGAGAN "L L LT "L L LT L
VLT LL NIROGROGAN) NOROGARORNY QLT L
\QQ,QQ)QB‘QQDQ(OQ/\Q%Q \Q(,/Q%Q@QDQ%Q,\Q%Q \QQ/QQ)Q @@Q@Q/\QQ,Q

Figure 6.9: Performance metrics of map implementations using integer keys and boolean
values, by map-related operation and data size.
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contrary, HashMap is, on average, 246 msec. (13%), 422 msec. (4%), and 5,516 msec. (22%)

faster than ArrayMap for iteration, random query, and deletion operations, respectively.

Concerning memory usage, ArrayMap is a bit more efficient than HashMap. We find that

ArrayMap uses, on average, less memory (6%) than HashMap.

In terms of energy efficiency, HashMap consumes less energy than ArrayMap for all the opera-
tions (on average 7%, 6%, 6%, and 45%, for insertion, iteration, random query, and deletion

operations, respectively).

The Wilcoxon statistical test concludes that differences in CPU time and memory usage are
significant and the effect size is large for any data size. Differences in energy consumption
are significant and the effect size is large when the data size is greater or equal than 2,000
for insertion, iteration, and random query operations. For deletion operations, differences in

energy consumption are significant when the data size is greater than 1,000 elements.

Primitive type keys and values.

ArrayMap is faster than HashMap for insertion operations, but it is slower for iteration, random
query, and deletion operations. We observe that ArrayMap is, on average, 648 msec. (19%)
faster for insertion operations. On the contrary, HashMap is, on average, 239 msec. (12%),
434 msec. (12%), and 5,518 msec. (47%) faster than ArrayMap for iteration, random query,

and deletion operations, respectively.

Concerning memory usage, There is no a clear trend and we consider that both implemen-
tations are memory efficient. However, ArrayMap uses, on average, less memory (5%) than
HashMap.

In terms of energy efficiency, ArrayMap consumes less energy than HashMap for all the oper-
ations (on average 4%, 4%, and 2%, for insertion, iteration, and random query operations,
respectively). However, ArrayMap consumes, on average, much more energy (45%) than

HashMap for deletion operations.

The Wilcoxon statistical test concludes that differences in CPU time and memory usage
are significant and the effect size is large when the data size is greater or equal than 100.
Differences in energy consumption are significant and the effect size is large when the data size
is greater or equal than 20,000 elements, for insertion and iteration operations. For random
query operations, the statistical test reports that differences in terms of energy consumption
are significant when the data size is greater or equal than 30,000. For deletion operations,
differences in energy consumption are significant when the data size is greater than 1,000

elements.
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Cost of Adopting HashMap instead of SparseArray variants

Now we focus on the cost of adopting HashMap with primitive type keys instead of using

SparseArray variants.

We find that SparseArray variants are faster than HashMap for insertion and random query
operations. This also keeps for deletion operations and SparseArray and LongSparseArray.
Regarding iteration operations, HashMap is a bit faster than any SparseArray variant. We
observe that SparseArray and LongSparseArray are, on average, 1,040 msec. (27%), 1,503
msec. (42%), and 1,746 msec. (63%) faster for insertion, random query, and deletion opera-
tions, respectively. For iteration operations, HashMap is, on average, 79 msec. (<1%) faster
than SparseArray and LongSparseArray. Concerning SparseIntArray, SparselLongArray,
and SparseBooleanArray, they are, on average, 1,768 msec. (45%) and 725 msec. (21%)
faster for insertion and random query operations, respectively. However, HashMap is 782 msec.
(25%) faster for iteration operations. Regarding the deletion operation, we observe that
SparseIntArray, SparselLongArray, and SparseBooleanArray are, on average, 63 msec.
(28%) faster than HashMap for data sizes lower than 20,000 elements. For 20,000 or more

elements, HashMap is, on average, 5,569 msec. (40%) faster for deletion operations.

In terms of memory usage, SparseArray variants are more efficient than HashMap for all data
sizes. They use, on average, 1,025 kB (62%) less than HashMap.

Regarding energy consumption, SparseArray variants consume less energy than HashMap
for insertion, iteration, and random query operations. This also keeps for SparseArray and
SparseLongArray and deletion operations. We find that SparseArray and LongSparseArray
consume, on average, 6%, 4%, 7%, and 6% less than HashMap for insertion, iteration, random
query, and deletion operations, respectively. Concerning SparseIntArray, SparselLongArray,
and SparseBooleanArray, they consume, on average, 8%, 6%, and 8% less energy than
HashMap for insertion, iteration, and random query operations. On the contrary, HashMap
consumes 42% less energy than them for deletion operations. Regarding the deletion oper-
ation, we observe that SparseIntArray, SparseLongArray, and SparseBooleanArray con-
sume, on average, 2% less energy than HashMap for data sizes lower than 2,000 elements.
However, for 2,000 or more elements, HashMap consumes, on average, 66% less energy for

deletion operations.

The Wilcoxon statistical test concludes that differences in CPU time and memory usage are
significant and the effect size is large for all data sizes. Differences in energy consumption

are significant and the effect size is large for most data sizes.
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Cost of Adopting ArrayMap instead of SparseArray Variants

Now we focus on the cost of adopting ArrayMap with primitive type keys instead of using

SparseArray variants.

We find that SparseArray variants are faster than ArrayMap for insertion, random query,
and deletion operations. This also keeps for iteration operations and SparseArray and
LongSparseArray. We obtain that SparseArray and LongSparseArray are, on average, 393
msec. (10%), 160 msec. (13%), 1,938 (49%), and 7,264 msec. (80%) faster than ArrayMap
for insertion, iteration, random query, and deletion operations, respectively. Concerning
SparseIntArray, SparseLongArray, and SparseBooleanArray, they are, on average, 1,118
msec. (32%), 1,165 msec. (31%), and 3,112 msec. (47%) faster than ArrayMap for insertion,
random query, and deletion operations, respectively. However, ArrayMap is 543 msec. (14%)

faster for iteration operations.

In terms of memory usage, SparseArray variants are more efficient than ArrayMap for all

data sizes. They use, on average, 952 kB (60%) less than ArrayMap.

Regarding energy consumption, SparseArray variants consume less energy than ArrayMap
for all the operations. We find that SparseArray variants consume, on average, 4%, 2%,
6%, and 32% less energy than ArrayMap for insertion, iteration, random query, and deletion

operations, respectively.

The Wilcoxon statistical test concludes that differences in CPU time and memory usage
are significant and the effect size is large for all data sizes. Differences in energy consump-
tion between ArrayMap and SparseIntArray, SparselLongArray, and SparseBooleanArray
are significant and the effect size is large for most data sizes and all operations. However,
although differences between ArrayMap and SparseArray and LongSparseArray are signifi-
cant for most data sizes for random query and deletion operations, for insertion and iteration

operations differences are not always significant.

6.4 Guidelines

Most developers are willing to replace HashMap with any of the map implementations pro-
vided by Android if they offer better performance. Figure 6.10: is a choice matrix summa-
rizing our findings to help developers choose a map implementation. Green shades identify
improvements in an operation and performance metric while yellow and orange shades mean
worsening. We consider that an improvement/worsening is high/low if differences between
map implementations and values of a performance metric are, on average, greater /lower than

25%mAnrowswithystrongersshades of green is likely to be more efficient on average. We also
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specify a threshold in data size indicating whether our findings hold for more elements than
the threshold. The symbol — indicates that, even if on average a map implementation is

better than the other, there is no a threshold for which it is always true.

High improvement (225%) - Low improvement (<25%) Low worsening (<25%) ‘ High worsening (225%) -

CPU Memory Energy

Insertion Iteration Query Deletion Insertion Insertion Iteration Query Deletion

HashMap
(objects) any size any size any size >= 2,000 >=2,000 >=2,000

ArrayMap
(objects) any size any size

HashMap
(primitive types) any size any size

ArrayMap
(primitive types) any size - >= 15,000 >= 20,000 >= 30,000

HashMap

(primitive types) any,size

SparseArray
and any size any size any size any size
LongSparseArray

HashMap
(primitive types) any size

SparselntArray
SparseLongArray any size any size any size any size
SparseBooleanArray

ArrayMap
(primitive types)

SparseArray
and any size any size - = -
LongSparseArray

ArrayMap
(primitive types) any size

SparselntArray
SparseLongArray any size any size any size
SparseBooleanArray

Figure 6.10: Color map showing the comparison between each pair of map implementations,
operation, and performance metric. Green colors identify more efficient implementations.
The greener the color, the better.

To know if performance differences are perceivable by end users when a more efficient map
implementation is used, we conduct an additional experiment. We randomly select an app
from our subject apps which contains occurrences of HashMap with primitive types as keys and
values. Our guidelines suggest to use SparseIntArray as a more energy efficient alternative
to HashMap. We select the app SudokulsFun because we can compile and run it on our phone.
This is a simple Sudoku game with a simple user interface. Then, we carry out an experiment
comparing the energy consumption of the original version and the refactored one (by replacing
HashMap<Integer, Integer> with SparseIntArray). In 30 runs of a simple scenario that
introduces some values and solved the Sudoku, the refactored version consumes less energy

1s that, if the battery is fully charged and a user repeats this
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scenario until the battery is over, the refactored version allows users to play two minutes
and forty-nine seconds more. Therefore, replacing HashMap with SparseIntArray extends
battery life by 0.81% for this app and scenario. Although the improvement may seem rather
marginal, it might be important enough for some developers to rethink their choices. Besides,
SudokulsFun uses maps in only one of its method, which is not heavily used. Consequently,

the observed improvement is rather the lower limit of possible improvements.

6.5 Discussion

From the observational study we conclude that HashMap is the most used Java map imple-
mentation in Android apps. ArrayMap and SparseArray variants map implementations are
rarely used in Android apps. From the survey we conclude that developers are not aware of
the overhead incurred when selecting an inappropriate map implementation and that is why

they use what they know that works.

From our empirical study, we partially agree with the Android developers’ reference documen-
tation: ArrayMap is generally slower than HashMap because lookups require a binary search.
However, it is not true for insertion operations for which we find that ArrayMap is faster
no matter the number of elements. We also confirm that ArrayMap consumes, on average,
less memory than HashMap (by up to 6%). Although ArrayMap is more energy efficient than
HashMap when keys are primitive types, we find that ArrayMap consumes more energy than
HashMap for all the operations when keys are objects. The larger the number of elements,
the larger the difference. We also observe that ArrayMap is highly inefficient for deletion op-
erations. Figures 6.5:, 6.6:, 6.7:, 6.8:, and 6.9: show that, while for insertion, iteration, and
random query operations CPU time and energy consumption grows up linearly with respect
to data size, for the deletion operation the growth is exponential. Because ArrayMap shrinks
its array as items are removed from it. However, when an element is removed in a HashMap
the corresponding node in the entry set table is set to null. It means that HashMap does not
shrink its entry set in deletion operations. This aggressive shrinking behavior for deletion
operations in ArrayMap is justified in the Android developers’ reference documentation to
better balance memory use. Even if this fact is true, the impact of this decision on CPU
time and energy consumption is not negligible. We recommend to use HashMap instead of
ArrayMap when keys are objects to improve the energy efficiency of Android apps. How-
ever, HashMap is often adopted with primitive type keys. In that cases, the official Android
IDE, Android Studio, warns about replacing HashMap with SparseArray variants for better
performance. We confirm that SparseArray and LongSparseArray are more efficient than

HashMap in terms of memory usage. But we also extend this fact to energy consumption.
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Contrary to the documentation, we found that HashMap is faster than SparseArray and
LongSparseArray but only for iteration operations. For insertion and random query opera-
tions, they are faster than HashMap no matter the number of elements. We also observe that
the higher the numbers of elements, the higher the differences in the three performance met-
rics in favor of SparseArray and LongSparseArray (except for the iteration operation for
which HashMap is slightly faster). The same keeps for SparseIntArray, SparselLongArray,
and SparseBooleanArray if values are also primitive types, excepting that these map imple-
mentations are faster than HashMap for iteration operations and they are less efficient than

HashMap for deletion operations.

Android proposes SparseArray variants as a replacement for HashMap when keys are prim-
itive types for better performance. We find that this proposition also hold for ArrayMap.
Thus, ArrayMap should be replaced by SparseArray variants if primitive types are used as

keys.

Although SparseArray variants are efficient alternatives to HashMap and ArrayMap, we
strongly recommend to review the implementation of SparseIntArray, SparselLongArray,
and SparseBooleanArray, which are highly inefficient when removing elements in comparison
to SparseArray and LongSparseArray. Figures 6.6:, 6.7:, 6.8:, and 6.9: show that, while for
insertion, iteration, and random query operations CPU time and energy consumption grows
up lineally with respect to data size, for the deletion operation the growth is exponential. The
reason is that removes require deleting entries in the array of these map implementations. On
the contrary, SparseArray and LongSparseArray include an optimization when removing
keys to help with performance. Instead of compacting its corresponding array immediately,
it leaves the removed entry marked as deleted. The entry can then be re-used for the same
key, or compacted later in a single garbage collection step of all removed entries. Considering
our experiments, this implementation detail seems to make the difference between these map

implementations for the deletion operation.

We conclude that ArrayMap consumes less energy than HashMap when keys are primitive
types. This confirms what we found for the HMU Android anti-pattern in the previous
chapter, because most of the studied apps in our previous study use primitive type keys.
However, SparseArray variants are more efficient choices than HashMap and ArrayMap. Thus,
developers must consider the use of ArrayMap with primitive type keys as a new Android
performance anti-pattern. Following our guidelines developers can make informed decisions

about the map implementations to use in their apps.

In the observational study we focus on the use of Java and Android map implementations in

Android apps. During the analysis of the source code of the apps under study, we observe
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that developers usually integrate in their apps more than one TPLs to implement different
functionalities. For example, during the validation of our observational study we found apps

that integrate TPLs that offer specific implementations of data structures, or TPLs to connect

to social networks. This fact motivates the next chapter, there we study the performance of
TPLs.
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CHAPTER 7 HELPING DEVELOPERS CHOOSE THIRD-PARTY
LIBRARIES

Mobile device apps are complex mostly because they rely on calls to the Android API and the
integration of multiple TPLs. However, TPLs make mobile device app development much
more convenient by offering implementations of specific functionality. For example, app
developers often use advertising libraries as a source of revenue, integrate social networking
libraries to simplify the login process, or include crash reporting tools to monitor crashes in

theirs apps.

The size and complexity of mobile device apps grow in correlation with the addition and usage
of TPLs. As Minelli et Lanza (2013) obtained, external calls represent more than 75% of the
total number of method invocations in Android apps. To comprehend mobile device apps is
important to understand the behavior of the used external libraries. Previous experiments
carried out by Wang et al. (2015) on more than 100,000 Android apps from five different
Android markets, shown that more than 60% of the sub-packages in Android apps are from
TPLs. On average, TPLs account for more than 60% of the code in Android apps. Inefficient

TPLs could have an important negative impact on the quality of mobile device apps.

To help developers monitor and control TPLs, the company SafeDK ! provides an end-to-end
TPLs management platform on the Internet. SafeDK also offers a marketplace that lets
developers explore through hundreds of reviewed and rated TPLs by category. However, to
the best of our knowledge, there is no previous research concerning the impact of TPLs on
performance of mobile device apps. Consequently, developers are forced to integrate a TPL
and monitor user’s comments to, hopefully, detect performance issues that could be related
to that TPL.

In this chapter, we propose a methodology to compare the performance of different TPLs. It
allows developers to make informed decisions about the TPLs to be included in their apps
to improve their performance. This methodology can be applied at any time during the
software development process cycle. However, we recommend its usage during the design,

implementation, or testing and integration phases.

1. https://www.safedk.com/
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7.1 Methodology

In this section we describe the steps of our methodology to compare performance metrics of
TPLs. First, developers create a minimal app for each TPL under study. Second, they define
a scenario to exercise TPL’s functionality. Then, developers run each minimal app and play
the defined scenario while performance metrics are collected over several runs. Finally, data
are aggregated and a comparative between TPLs for each performance metric is generated.
We describe these steps next. As a practical case, let us suppose that a development team
want to include a TPL for advertising in a new mobile device app. Ads allow developers to
keep their content free and available, reaching more users, while still making revenues. Let us
also consider that developers want to include a banner ad format in the new app to increase
their revenue. There are several TPLs for choosing from but let us suppose that developers

are particularly interested in three of the most popular TPLs for advertising.

7.1.1 Creating a Minimal App for Each Subject TPL

Developers create a minimal mobile device app for each TPL under study. By minimal
we mean an app with the simplest GUI. We recommend using dark colors for the GUI to
minimize the impact of the screen on energy consumption measurements. Next, developers
modify the source code of each minimal app to include the corresponding TPLs under study.
After this, developers build the release signed version of the apps. We suggest to build
apps in this way because it does not introduce information about debugging, and because
apps should be signed before submitting them to marketplaces. Thus, at the end, there is
a minimal app for each of the TPLs under study. Regarding the practical case, developers
build three different minimal apps, one for each advertising TPL. All of them use a similar
GUI that only contain a banner at the top. In addition, each ad library is configured in a
similar way to make a fair comparison. For instance, setting similar refresh rate of ads for
all of them.

7.1.2 Defining Scenarios to Exercise TPLs’ Functionality

Developers define playable scenarios to exercise the TPLs under study. Assuming that TPLs
in consideration offer similar functionalities, developers must define a unique scenario which
is common for all the TPLs under study. For the practical case the scenario could be really

simple. It only waits several seconds until an ad is loaded and showed to the user.
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7.1.3 Collecting Performance Metrics

Developers run each minimal app and play the defined scenario while performance metrics
are collected. This should be done in an automatic way and, at least, 20 times. It allows to

collect enough data to carry out an automated statistical study.

7.1.4 Statistical Analysis

Once performance metrics are available, statistical tests are carried out to check whether
differences between each pair of TPLs are significant. We recommend to perform the pairwise
comparisons between different TPLs using the Wilcoxon rank sum test, with a confidence
level of 95% (p-value = 0.05). It allows to check if the difference observed between the
values of the performance metrics of different TPLs is significant. In this case, the null
hypothesis is that the distribution of performance metrics of a TPL and performance metrics
of a different TPL differ by a location shift of p (the average value). In addition, when a
pairwise comparison is significant the effect size is computed. We recommend to compute
the effect size using the Cliff’s § method.

7.1.5 Output

As output, information about performance metrics for each TPL is reported through two
different plots. One plot shows the distribution of each performance metric for each TPL. A
second plot shows the pairwise comparison of the TPLs under study for each performance
metric. It includes for each pairwise of TPLs and each performance metric the median value
of each TPL, the difference of the medians, if differences are significant and, in that case, the
magnitude of the effect size. All of this allows developers to graphically compare performance
metrics of different TPLs and make informed decision about the TPL to integrate in their

mobile device apps.

7.2 Case Study

We validate our methodology proposing a case study over popular Android TPLs. We choose
the Android ecosystem due to its popularity. SafeDK has done a survey of Google Play
analyzing the top apps available for free worldwide?. This study reports the trends of app
publishers using TPLs looking at data from May 2017 and analyzing more than 150,000 apps

and over 900 TPLs. Based on their findings, we select for our case study three of the most

2. http://mobile-sdk-data-trends.safedk.com/full-report-May-2017
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popular categories of TPLs and three of the most popular TPLs used by mobile device app
developers. We summarize this information in Table 7.1: where we also show the version and
provider of each TPL.

Table 7.1: Popular Android TPLs under study.

Name Version  Provider Category
admob 10.2.4 Google Advertising
applovin 7.2.0 Applovin Advertising
mopub 4.15.0 Twitter Advertising
firebase 11.0.2 Google Analytics
flurry 7.0.0 Yahoo Analytics
google 10.2.4 Google Analytics
acra 4.9.2 ACRA Crash reporting
crashlytics 2.6 Crashlytics  Crash reporting
newrelic 5.14.0 Newrelic Crash reporting

Advertising TPLs allow developers to keep their content free and available while still making
revenues. Analytic TPLs provide insights with which developers can learn how their users
are behaving, where they might be losing them, and much more. Crash reporter TPLs create
detailed reports of errors in apps which are reported to developers. For each TPL in these
categories we create a minimal Android app. All the apps for each TPL in a category have
the same GUI. Figure 7.1: shows a screenshot of the main activity of the minimal app for
each TPL category. For advertising TPLs we introduce a banner at the top of the device
screen. For analytic TPLs we define in the main activity a fragment pager adapter with four
different fragments, containing each of them a different image and a string used as identifier
(Imagel, Image2, Image3, and Image4). Every time a user swipes left or right, the previous
or next fragment is loaded, respectively, and an event is sent to the corresponding TPL server.
Finally, for crash reporter TPLs we introduce a button that throws a runtime exception to

simulate a crash when it is clicked.

Next, for each TPL category we define an scenario to exercise TPLs functionality. For
advertising TPLs we wait few second in the main activity to load an ad. For analytic TPL’s
we navigate through the different fragments. Finally, for crash reporter TPLs we click the

button to throw a runtime exception.

Once the minimal apps have been developed and the scenarios defined, we automatically
run each minimal app and we play its corresponding scenario while we collect performance

metrics. We repeat this process 30 times.
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Figure 7.1: Minimal app for each TPL category, all of them designed for our case study.
From left to right, the GUI of the minimal Android apps for the advertising, analytic, and
crash reporter categories, respectively.

Results

Figure 7.2: shows the distribution of each performance metric for each TPL, grouped by
category. As it is shown, different TPLs have different performance. For example, for adver-
tising TPLs, applovin uses less CPU and memory than admob and mopub. However, applovin
transmits more data over the network than the other TPLs. Concerning the analytics TPL
category, google seems to be more efficient for CPU, memory, and network usages, but it
seems to consume a bit more energy than flurry and firebase. Finally, for the crash reporter
library, acra is clearly more efficient than crashlytics and newrelic for memory and network

usages but this fact does not keep for CPU usage.

In addition to the distribution of performance metrics, we also compute the ranking of each
TPL category and performance metric. First, we aggregated the data for each TPL and
metric computing the median over the 30 independent runs. Second, we obtain the ranking of
each TPL in a category for each performance metric based on the aggregated data. Table 7.2:
shows the ranking of subject TPLs. With this information developers can know which TPL
is better than others for different performance metrics. For example, for the advertising TPL
category, we confirm that applovin is the best one in terms of CPU and memory usages but
it is the worst in terms of network usage. Regarding the analytics TPL, we confirm that

google is the best one in terms of CPU, memory, and network usages. However, google is the

www.manaraa.com



77

Advertising Analytics Crash reporter
DI g 100.0
98- . 217- T 99'5_
B 216- . - '
96- m ] m 99.0- m
=1 215 > >
94- & s gy B 2
«Q «Q 98.0- «Q
92- = 213- = 97.5- =
212- :
90- 211- . . 97.0-
88- o 96.5-
16- 5.0- e 1.4- 8
14- Z e —— 1.2-
12- 25- 10- e
10- (@} 30- (@) 0.8- (@)
8- pes : b ' 3 T
6 c 2.5- c 0.6- . c
4- 2.0- 0.4-
5- %-8: R e 0.2- + <L .
0- i 0'5_ 0?;(6)- o —_——
70- 36.6- ;
J 36.4- 34-
65 q- == 36.2- 32- -P -F
55- 3 356 3 281 3
50- g 35.4- 2 26~ o 2
= 35.2- S 24- T S
45- 35.0- 22- ==
40- . 34.8- 20-
9 34.6-
] 0.030-  * 0.055- .
8.
7 0.025- . 0.050- —_——
&1 £  0.020- : B 0045 5
4- £ 0015 : 8'8;“5’: H
3 = 0010- (X = ' =
2- 0.005 = . 0.030- =
1- . 7 J
0- —O— FEEEL —0— 000- . . == 0025 . .
admob applovin  mopub firebase  flurry  google acra crashlytics newrelic

Figure 7.2: Distribution of each performance metric for each TPL, grouped by category. The
lines in the boxes indicate the minimum value, lower quartile, median, upper quartile, and
maximum values. The “o” symbols represent the average value.
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worst regarding energy consumption. Finally, concerning the crash reporter TPL category,
we confirm that acra is more efficient than the others in terms of CPU, memory, and network

usages. On the contrary, crashlytics is the less efficient for these metrics.

Table 7.2: Rankings provided by our approach for each performance metric and TPL.

TPL Energy CPU Memory Network Category

admob 1 2 3 1 Advertising
applovin 2 1 1 3 Advertising
mopub 3 3 2 2 Advertising
firebase 1 3 2 2 Analytics
flurry 2 2 3 3 Analytics
google 3 1 1 1 Analytics
acra 1 3 1 1 Crash reporter
crashlytics 3 2 3 3 Crash reporter
newrelic 2 1 2 2 Crash reporter

Although rankings are useful to make a quick and intuitive comparison, they do not show
the full picture. Differences between different TPLs could be small or even not statistically
significant. Figure 7.3: shows the pairwise comparison of the TPLs under study for each
performance metric. For each cell in the matrix, negative differences (green colors) mean
that the TPL at the bottom is better than the TPL at the left. On the contrary, positive
differences (red colors) mean that the TPL at the bottom is worse than the TPL at the
left. Therefore, greener colors higher differences in favor of the TPL at the bottom and
redder colors higher differences in favor of the TPL at the left. Only cases where there
is a statistically significant difference are shown. From here developers can observe that
the three TPLs under study for the advertising category are statistically similar in terms
of network usage, because differences are not statistically significant. The same keeps for

energy consumption and the analytics and crash reporter TPL categories.

For the advertising TPL category we confirm that admob is the most energy efficient TPL.
It consumes 2.59% and 5.68% less energy than applovin and mopub, respectively. However,
admob uses more CPU (42.72%) and memory (28,92%) than applovin, which is the most
efficient TPL in terms of CPU and memory usages. Regarding the analytics TPL category,
google uses 16.73% and 7.94% less CPU than firebase and flurry, respectively. Although flurry
has a better ranking than firebase for CPU usage, differences are not statistically significant.
The google TPL also uses less memory (0.57% and 2.22%) and transmits less data over the
network (77.75% and 93.21%) than firebase and flurry, respectively. Even if google has the
worst ranking for energy consumption, differences are not statistically significant. Therefore,
it could be considered as the most efficient of the three TPLs under study. Finally, concerning

the crash reporter TPL category, we confirm that acra is the most efficient in terms of memory
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Figure 7.3: Pairwise comparison of TPLs and performance metrics. Each cell contains the
difference of the medians in %, the magnitude of the difference (in Joules, %, MB, and MB, for
energy consumption, CPU, memory, and network usages, respectively), and the magnitude
of the effect size (small, medium, or large). Absent values indicate cases where there is not

a statistically significant difference.
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and network usages. It uses 37.16% and 33.85% less memory and it transmits 54.00% and
20.69% less data over the network than crashlytics and newrelic, respectively. However,

newrelic is the most efficient in terms of CPU usage.

7.3 Discussion

For the advertising TPL category there is no a best TPL for all the metrics. Therefore,
developers could make their decision about the TPL to use based on the context of use of
their app. For example, if developers want to target emerging markets they should integrate
in their app the applovin TPL. It is the most efficient in terms of CPU and memory usages,
and differences are not statistically significant in terms of network usage with respect to
admob and mopub. For this reason we consider applovin as the best choice if CPU, memory,

and network usages are the most important metrics.

Concerning the analytics TPL category, we recommend to integrate the google TPL. Differ-
ences are not significant in terms of energy consumption and it is the most efficient in terms

of CPU, memory, and network usages.

Finally, regarding the crash reporter TPL category, there is not a winner and, again, devel-
opers could decide taking into account the context of use of their app. Thus, for example,
if developers are not targeting emerging markets they could integrate in their app the acra
TPL. Although it uses more CPU than the others, it is as energy efficient as them and it

uses less memory and transmits less data over the network.

Developers can use our methodology and—or our catalog to compare the performance of

different TPLs and make informed decisions about the TPLs to integrate in their apps.

Advertising TPLs is one the most popular TPLs integrated by developers in their apps
because they allow them to keep their content free while still making revenues. But developers
can also offer paid versions of their free apps in marketplaces. In next chapter we perform a
study about ads-supported apps and their corresponding paid versions to understand their

performance and differences.

www.manaraa.com



81

CHAPTER 8 COMPREHENSION OF ADS-SUPPORTED AND PAID
APPS

As we obtained in the previous chapter, different TPLs have different performance. Thus,
developers can improve their apps performance integrating efficient TPLs. One of the most
popular TPL integrated by developers is for advertising. Ads allow developers to keep their
content free and available, reaching more users, while still making revenues. However, it is
well-know the hidden cost of ads and, therefore, developers must have this fact in mind to

decide to include or not ads in their apps.

On the one hand, both developers and users are interested by free apps: developers to
showcase their apps and users to test out these apps for free. On the other hand, developers
may offer, in addition to their free versions, paid apps and include in the free versions ads.
These ads-supported apps offer less or similar features than their corresponding paid versions
and they use ad networks to display ads that provide revenue to developers. While paid apps
have clear market values (their prices), ads-supported versions are not entirely free because
ads in apps have an impact on app ratings and users’ privacy (Book et al., 2013) but also
on performance (Wei et al., 2012; Gui et al., 2015). Yet, users are sometimes reluctant to
pay for apps when ads-supported versions of the same or similar apps exist for free.For this
reason, and to increase the numbers of purchases of paid apps, Google launched in 2016 the

71 When users set up a family group on Google Play, the family

concept of “Family Group
manager can invite up to five people to the group and they can share purchased apps. Thus,

the prices of the purchased apps is divided by the numbers of family members.

First, we study the balance between the costs of ads in free apps and the costs of paid apps,
while considering their performance and sharing among family groups. We carry out an
experimental study to compare the performance of ads-supported and paid apps and we pro-
pose four equations to estimate the cost of ads-supported apps. We want to make explicit the
hidden costs of ads when considering the possibility to form family groups. Thus, we want
to provide some advices to developers, to seize and act on the balance between visible and
hidden costs of paid and ads-supported apps. Past studies (Wei et al., 2012; Gui et al., 2015)
discussed the impact and hidden costs of ads on performance metrics. However, they did not
support their reports using statistical tests and, therefore, their conclusions could be statis-
tically invalid. We complement these previous studies with measures that we can analyze

statistically to check if ads-supported apps are more costly in terms of performance metrics

1. https://support.google.com/googleplay /answer /6286986
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than paid apps because of the presence of ads. In addition, we propose different equations
to determine the cost of free apps due to ads. Second, we carry out an exploratory study
about the ads-business model comparing ads-supported and paid apps to understand their

differences and development process.

8.1 Context of the Study

The context of our study is the official Android marketplace, Google Play, and the subjects
are ads-supported and paid Android apps available in this marketplace. For each category
in Google Play, we randomly select eight paid apps with a free version available. Over
the resulting 128 apps 63 are discarded because (i) their corresponding free versions do not
contain ads (31 apps), (ii) they require a GPS connection to work (four apps), (iii) their
corresponding APK files are invalid and apps are not installable in our phone (10 apps),
(iv) they crash on the real phone (nine apps), or (v) their corresponding paid versions do
not work because they must be installed from Google Play (nine apps). Therefore, over
the initial 128 apps we select 65 which contained visible ads and work on our phone. We
use these 65 apps for the exploratory study. Among these 65, we randomly select 20 from
different developers for the experimental study. We did that because for the experimental
study we need to buy the paid version of the apps. On the contrary, for the exploratory
study, we can get the information we need crawling Android app repositories. Anyway, our
selection process is akin to a stratified random sampling of paid apps with two strata: ads-
supported version and working on our phone. Selected apps belong to 14 different categories,
the number of downloads for ads-supported and paid apps is in the range [500, 100000000]
and [10, 1000000], respectively, and the rating is in the range [1.2,4.6] and [1.0,5.0] for ads-
supported and paid apps, respectively. Therefore, we selected apps with different popularity
and ratings, belonging to different categories in the official marketplace, and from different
developers. For all of this we consider that we have a reduced but representative sample of

Android apps.

8.2 Experimental Study

For each app, we create a simple scenario to start the app, skip the initial tutorial (if present),
and wait for 100 seconds in the main activity that contains ads in the free version. These
scenarios are run 30 times automatically while we collect performance metrics. We perform
a Wilcoxon rank sum test to check if the differences observed between the values of the

measures of ads-supported and paid versions are significant. Our null hypothesis is that the
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distributions of the measures of paid apps and that of their corresponding ads-supported
versions differ by a location shift of  (the average value), expecting that paid apps have a
better performance. We consider the difference to be significant if the obtained p-value is
lower than 0.05. In addition, we compute the effect size using the Cliff’s ¢ function when the
comparison is significant. Using the collected data we determine the cost of ads-supported
apps due to ads depending on the network usage, the battery drained, and the time in which
a data plan is over, to estimate the time in which an ads-supported app overtakes its paid

version.

8.2.1 Results

Ads-supported apps use more resources than their corresponding paid versions and differences
are statistically significant and the effect size large, thus, we can reject the null hypotheses.
Therefore paid apps are more efficient in terms of power, CPU, memory, and network usages
because of the absence of ads. Figure 8.1: shows the differences in percentages for each
performance metric between ads-supported and paid apps. Ads-supported apps consume, on
average, 21.27%, 5.88%, 42.15%, and 93.19% more than paid apps for power, CPU, memory,

and network usages, respectively.
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Figure 8.1: Performance metric differences for ads-supported and paid apps. The lines in
the boxes indicate the minimum value, lower quartile, median, upper quartile, and maximum
values. The “o” symbols represent the average value.

From the collected data, we obtain that, on average, ads-supported apps increase network
usage by 1.28MB (median 0.56MB). The average data network usage is so high because one
app consumes a lot of data in its free version (average 14.43MB in comparison to the 0.06MB

consumed by the paid app). Using the median value, we estimate the average network usage
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of each ad. Taking into account that in 100 seconds, on average, 2.6 ads are loaded, we
conclude that 0.21MB (%) is the average network usage of each independent ad. We
thus estimate the network cost of ads using the price of $15 per gigabyte as provided by
the AT&T company, a popular American Internet services provider. We thus determine that
each load of an ad potentially costs end users $0.00315 in network charges. Concerning power
usage, on average, ads-supported apps increases it by 0.34W (median of 0.27W). Instead of
power, we estimate the cost of ads in terms of energy consumption. The average difference in

terms of energy consumption between ads-supported and paid apps is 36.35J (median 20.29J).

Considering this fact we conclude that 13.98J <362"?’65J ) is the average energy consumption of

each independent ad.

8.2.2 Cost of Free Apps Due to Ads

Taking into account the average energy consumption of ads we use Equation 4.1 to calculate
the percentage of battery charge that is consumed by ads. We conclude that, on average,

each independent ad consumes 0.0486% of the total battery.

We analyze the impact of the refresh rate of ads on the real cost of ads-supported apps calcu-
lating the total network (in MB) consumed by ads in ads-supported apps using Equation 8.1,
where D is the running time of the app (in seconds), R,.q. is the refresh rate of ads (in sec-

onds), and network,qs is the average network usage of ads in MB.

network = ( ) X networkqgs (8.1)

rate

We define a similar equation to analyze the impact of the refresh rate of ads on battery
life for ads-supported apps using Equation 8.2, where battery,qs is the average percentage of

battery consumed by ads, which can be calculated using Equation 4.1.

D
) X battery,qs (8.2)

batterygraine :<
v a Rrate

In addition, given a data plan size, we calculate the time (in seconds) in which the data
limit would be reached because of ads using Equation 8.3, where datasize is the size of the
data plan in MB, R, is the refresh rate of ads (in seconds), and network,qs is the average

network usage of independent ads in MB.

datasize X R,qie

(8.3)

Ddataplcm =
networkyqs
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There is a point in time in which the hidden costs of ads-supported apps overtake the clear
costs of paid apps and, thus, ads-supported apps could be more expensive. To estimate the
time in which an ads-supported app overtakes its paid version, we define Equation 8.4, where
Priceqy, is the cost of the paid app (for example, American dollars), R,q. is the refresh rate of
ads (in seconds) in the free app, network,qs is the average network usage of each independent
ad (in MB), pricey p is the MB price of overage data (in $/MB), and members is the number
of people in the Google Family Group sharing the app.

Priceapp X Rrate

amortization =

(8.4)

network,qs X pricey g X members

8.2.3 Practical Case

Although the cost of network usage and battery life could be considered small, it depends
on the use of the app as follows. Let us suppose that we use the ads-supported version of
com.foobniz.pdf.reader, which is a popular PDF book reader that we used in our case study.
Developers use a refresh rate of 60 seconds for this app. If a user uses this app 100 minutes
every day for a month, Equation 8.1 shows that about 630MB of data would be spent only
in ads. If the data plan is limited, for instance, to 500MB, Equation 8.3 shows that it would
be over in 24 days and the user would be billed for 130MB that supposes $1.95. Regarding
battery life and considering Equation 8.2, because the app is used every day for 100 minutes,
the battery percentage would be decreased an additional 4.86% each day, for only loading
ads. Using Equation 8.4, and considering that A1l costs $3.49, we obtain that if the data
plan is over and the free app is used only by one member of the family group for 19 hours,
the cost of data overage due to ads would be higher than the price of the paid app. If we
consider that up to five users can belong to a family group, the cost of data overage would

be higher than the price of the paid version in only four hours.

8.3 Exploratory Study

We conduct this study about the ads-business model comparing ads-supported and paid apps
to understand their differences and development process. We analyze 130 Android apps, 65
ads-supported apps downloaded from Google Play and their corresponding paid versions
bought in the same market. We analyze the frequency of releasing of ads-supported and
paid apps and the evolution of the prices of paid apps across releases. In addition, we collect
and process information about all the developed Android apps offered in Google Play by
developers of the selected apps to know the proportion of paid apps with respect to free ones

insthe-marketplaces»Weralso) compare both ads-supported and paid apps in terms offered
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features, required permissions, and used ad networks.

We collect information about stats of apps, their prices, release dates, and features from

2. The latter is a public source for information about Android

Google Play and AppBrain
apps and we cannot guarantee that it does not introduce any bias. However, we compared
information existing in AppBrain and Google Play for the last version of the apps used in
our study and confirmed that the information offered by AppBrain was consistent. We only
consider the last versions because they are the only version available in Google Play. We
analyze permissions using the Android tools aapt and dumpsys, respectively. We developed
a Python script that obtains, from the APK file of each app, the list of granted permissions
for both ads-supported and paid apps. Then, we apply the diff command to analyze the
differences between ads-supported and paid versions of each app. Finally, we compute, for
the paid apps, the numbers of granted permissions removed and the numbers of granted
permissions added in comparison to their corresponding ads-supported versions. Lastly, we
use AppBrain Ad Detector to obtain information about the ad networks used in the apps,
which is available for free in Google Play. We verified the information offered by this app

using the free app Addons Detector, also available in Google Play.

We crawl the Google Play marketplace and the AppBrain website to extract information
about ads-supported and paid apps. Then, we analyze permissions using the developed
script and we use the app AppBrain Ad Detector to get integrated ad networks in apps.

Next, we summarize our findings.

What Mobile Device App Developers Prefer

We analyze the number and type of apps offered in the marketplace by the developers of the
subject apps to understand what type of apps developers usually prefer. In total, developers
offer 565 apps in Google Play. Out of these 565 apps, 118 free apps have the corresponding
paid versions, 167 are without paid apps, and 22 are without free version. Thus, 66.55% of
the free apps have corresponding paid versions, 29.56% of apps do not have corresponding

paid versions, and only 3.89% of paid apps do not have corresponding free versions.

What Mobile Device Apps Users Prefer

We compare ads-supported and paid apps in terms of numbers of downloads and users’ rat-
ings, which are considered measures of success (Harman et al. (2012a); Gomes et al. (2016)).

Ads-supported apps are always downloaded more than their paid counterparts. Considering

2. http://www.appbrain.com
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the central values of the ranges defining the numbers of downloads we conclude that ads-
supported apps are downloaded, on average, 115 times more than their corresponding paid
versions. Regarding ratings, for 56 apps (70.77%), paid versions have better ratings than
their corresponding ads-supported versions. For 19 apps (29.23%), free versions have ratings
greater than or equal to their paid versions. In average, ratings for paid apps is 4.00 while

for ads-supported apps is 3.85.

How Often Developers Release Apps

We analyze the frequency of releasing of ads-supported and paid apps to understand how
developers release free and paid apps. Figure 8.2: shows the distribution of the frequencies of
releasing of ads-supported and paid versions of the subject apps. In average, ads-supported
apps have 21.10 releases while paid apps have 17.90 releases. We also study the number
of days between consecutive releases for ads-supported and paid apps. Ads-supported apps
are released, on average, every 84 days (median 43 days) while paid apps are released less
frequently: every 101 days on average (median 51 days). In addition, we observe that de-
velopers usually release ads-supported apps before their corresponding paid versions. Thus,
ads-supported apps usually have more releases and are released more often than their corre-

sponding paid versions.
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Figure 8.2: Release frequencies for ads-supported and paid apps. The lines in the boxes
indicate the minimum value, lower quartile, median, upper quartile, and maximum values.
The “o” symbols represent the average value.
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Price Evolution of Apps

We study the evolution of the prices of different releases of paid apps to understand how
developers set and update prices. Out of 65 apps, 21 (32.31%) maintained their prices
constant over different releases while prices were increased for 13 (20.00%) apps and decreased
for seven (10.77%). For the other 24 (36.92%) apps the price fluctuated over the time. We
also analyze release dates to check the existence of any seasonal pattern (e.g., sales around
Christmas time). There is no a common pattern and price fluctuations are not explainable

by seasonal events.

Number of Features of Apps

We compare the features of ads-supported and paid apps to know if ads-supported apps have
as much features as the paid ones. In 18 cases, paid apps offer more features than their
ads-supported versions. It means that only 27.69% of the studied apps offer more features in
their paid versions. In the majority of cases (72.31%), the ads-supported and paid versions
of an app are identical in terms of features. Therefore paid apps never offer less features than

their corresponding ads-supported versions, which is expected.

Impact of Ads on App Permissions

Permissions is a mechanism that enforces restrictions on the operations that apps can per-
form. We compare ads-supported and paid apps in terms of numbers and types of granted
permissions. For nine apps (13.84%), the paid versions include new permissions that do
not exist in the ads-supported versions. For example, the CHECK LICENSE permission is
used in some paid versions to apply license controls to apps published through Google Play.
The GET_ ACCOUNT, MANAGE ACCOUNTS, and USE CREDENTIALS permissions
are used for logging in with Google and validate the user. Or the READ PHONE STATE
permission that is used in combination with the CHECK LICENSE permission for licens-
ing validation. For 21 apps (32.30%), both ads-supported and paid versions have exactly
the same numbers and types of permissions. Concerning paid versions, for 30 apps (46.15%),
permissions are removed in comparison to ads-supported versions (mostly permissions related
to network access and location, which are required to load ads). Thus, in general, paid apps
require less permissions than their corresponding ads-supported versions. Yet, the validation
of their licensing may require extra permissions which are not needed by their corresponding

ads-supported versions.
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Number of Ad Networks in Apps

Ads-supported apps use ad networks, which allow developers to include ads in their apps
by providing API and content. We investigate the numbers of ad networks. For each app,
for both their ads-supported and paid versions, we retrieve the ad networks that they use.
The number of ad networks used by ads-supported apps is in the range [1, 6] (average 1.80).
Considering paid apps, six of them contain ad networks and these networks are identical to
those in their corresponding free versions. The official Android documentation?® states that
the usage of ad networks increases the sizes of apps and users often avoid downloading large
apps *. Developers do not always remove ad networks in paid versions of their ads-supported

apps, which increases the apps sizes.

Refresh Rate of Ads

When using ad networks, developers set a refresh rate defining how often ads are reloaded.
The lower the value the more often are ads reloaded. We also investigate the values of the
refresh rates used by developers in their apps. Ad networks recommend to set it to a value in
the range of [30, 120] seconds, although the default value use to be 60 seconds. A zero value
means that ads would only be loaded once. We observe that for three apps developers set

null refresh rates. However, most developers set the refresh rate to 60 seconds. We estimate

100
1.88

ads reloaded in 100 seconds by ads-supported apps. This average refresh rate value has been

the average refresh rate of ads as [122] = 56 seconds. Where 1.88 is the average number of

estimated omitting the three apps with a null value.

8.4 Discussion

Ads-supported apps use more resources than their corresponding paid versions with sta-
tistically significant differences. We estimate that the average network usage and energy
consumption of ads is 0.21MB and 13.98J, respectively. We offer different equations to esti-
mate the network usage of ads-supported apps, the percentage of battery drained due to ads
in free apps, the time in which a data plan is over due to the presence of ads in free apps,
and the time in which an ads-supported app overtakes its paid version. Thus, depending on
the context of use, paid apps could be less expensive because their costs could be amortized

in a short period of time.

Although paid apps are more efficient than their free versions, we compare them to understand

3. https://firebase.google.com/docs/admob/android/lite-sdk
4. https://developer.android.com/topic/performance/reduce-apk-size.html
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their differences and development process. From our exploratory study we conclude that
developers do not usually offer a paid app without a corresponding free version. Although
paid apps have better ratings, ads-supported apps are downloaded much more by users. We
observe that ads-supported apps do not usually include less features than their corresponding
paid versions. However, ads-supported apps usually require more permissions than paid apps.
We also observe that developers usually start releasing free apps and later modify these apps
to release them into the marketplace as paid versions. Possibly because of this, developers

forget to remove ad networks in paid versions of their ads-supported apps.

From our observations we advise developers to take into account the impact of ads on their
apps. If developers want to include ads in their apps we recommend them to integrate the
most appropriate advertising TPLs for their app users. As we obtained in the previous
chapter, different TPLs have different performance. Offering both ads-supported and paid
versions of an app is a good idea. But we suggest developers to remove ad networks in
paid apps because they uselessly increase the app size and the number and types of An-
droid permissions. We also recommend developers to take into account the numbers and
types of required permissions when a license validation approach is used. License validation
requires communication with a server, which could increase the network usage and energy

consumption of apps.
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CHAPTER 9 AN APP PERFORMANCE OPTIMIZATION ADVISOR

From previous chapters we confirm that developers’ decisions have an impact on apps perfor-
mance. Thus, developers can improve the performance of their apps if they make informed
decisions during the development process. We discussed the impact of anti-patterns on en-
ergy consumption, but also the impact of map implementations, TPLs, and ads on apps

performance.

Developers who focus on apps performance can see improvements in their ratings and, thus,
their retention and monetization. However, developers ignore if their apps are as efficient as
apps with similar functionalities in the same marketplace. For example, to visit an article
in Wikipedia the browser Chrome consumes more energy and transmits more data over the
network than the browser Opera (mini). However, the former uses less CPU. It means that
there exist a trade-off in terms of performance between different apps. The same keeps for

any category of apps in any marketplace and mobile device platform.

Making performance information of apps available in marketplaces would be useful for devel-
opers to compare their apps performance with respect to their competitors. But availability
of app performance metrics in marketplaces would also be useful for users to select and install
efficient apps. However, the choice of efficient (optimal) apps would be complicated because
of the cognitive effort imposed to discriminate between different apps and metrics. This is
what we define as the App Selection Problem (ASP): the search of optimal mobile device
apps regarding different metrics. In this chapter we propose APOA as a mechanism to be

implemented in mobile device app marketplaces to make recommendations of efficient apps.

9.1 The App Selection Problem

Given the huge number of available apps in mobile device apps marketplaces, the number of
existing categories, and taking into account that, in a category, apps often share similar func-
tionalities, we define the ASP as a combinatorial problem. Let C = {CY, ...,Cy} be a set of N
categories. Further, assume that each category C; contains a set A; of apps. An element x of
the search space F, x = (z1,...,xy), is a set of apps where z; is an app selected from A; (with
[l €{1,...,N}). A solution x contains one app from each category in C. Considering the
previous, the size of the search space is given by [V, |A;| = |A1|-|As| - - - |An|, where the op-
erator | B| represents the number of elements in a set B. Because we consider five metrics and

we are interested in any combination of them, there exist (?) + (g) + (g) + (i) + (‘;) =31
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_ n!
Tkl (n—k)!

zero when k£ > n. Each of these 31 possible combinations of metrics is a particular instance

different combinations. The binomial coefficient (Z) whenever £k < n and which is
of the ASP. We summarize all of them in Table 9.1:. The first column contains an identi-
fier associated with each instance. Performance metrics and the rating are shown from the
second to the sixth column, respectively. In these columns the symbol “o” means that the
corresponding metric is considered in a particular instance of the problem. On the contrary,
the “-” symbol means that the corresponding metric is not considered. Finally, the last col-
umn specifies the number of objective functions of each instance. Thus, Instance 1 considers
power usage as metric to be optimized while Instance 31 considers power, CPU, memory,

and network usages, and the rating.

Table 9.1: Instances of the ASP when up to five different metrics are considered. The symbol
“o” means that the corresponding metric is considered in a particular instance of the problem.
The “-” symbol means that the corresponding metric is not considered.
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Considering that different apps belong to N different categories in a marketplace, and that
a solution x of the ASP is a combination of apps, metrics to be optimized can be calculated

as follow:

Zi]\;l power(x;)

power(X) = N (9.1)
CPU(x) = 2=t 0]5 Ulz:) 9.2)
memory(x) = i1 mtejzlory(xi) (9.3)

YN network(z;)

network(x) = N (9.4)
N , .
rating(x) = Zi=1 rc;ffmg(xz) (9.5)

In Equations (9.1), (9.2), (9.3), and (9.4), power(x;), C PU(z;), memory(z;), and network(x;)
are the average values of power (in W), CPU usage (in %), memory usage (in MB), and net-
work usage (in MB) for app z; in a certain number of runs and for a given number of
exercised app functionalities. In Equation (9.5), rating(zx;) is the rating of the application
x; in the marketplace. Notice that the constant N is just a rescaling factor and thus, in this

N .
Zi:l rating(z;
N

case, optimizing ) is the same as optimizing S | rating(z;). The same holds for

performance metrics.

If only one metric is optimized, the problem is considered as a single objective optimization
problem. On the contrary, if the number of metrics to optimize is greater than one, the ASP
is considered as a multi-objective optimization problem. A solution for any instance of the
ASP is a recommendation of optimal apps for one or more categories of apps. We believe that
users and developers likely prefer to optimize more than one metric, for example maximizing
the rating while at least one performance metric is also optimized. Consequently, we are
more interested in instances of the ASP in which two or more metrics are involved. Thus,

we focus on multi-objective optimization problems.
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9.2 APOA: Conceptual Sequence of Steps

The APOA process is shown in Figure 9.1:. APOA uses as input the set of metrics to be
optimized and metric values of mobile device apps. This data can be given as a CSV file.
Using this information it solves the corresponding instance of the ASP generating, as output,
a Pareto optimal set of apps over which users choose the most preferred solution (decision
making). If the input contains metrics for apps in a single specific category APOA will
found optimal apps in that category. On the contrary, if metrics are given for sets of apps in
different categories, our approach will found optimal combinations of apps. APOA could be

considered as a solver of the ASP and it is transparent to the data collection process.

Performance a N
@ metrics and N /
rating of apps 5 /
\ APOA E / Pareto domain
]
e
3 ecision making
— i e &
o
= Metrics / optimize  [f;(X), ..., fu(X)] Pareto set d
@ to optimize s.t. xinF
v (context of usage) Objective function 1

e

_

Figure 9.1: APOA conceptual sequence of steps. It uses as input a set of metrics to optimize
and metric values for a set of apps belonging to different categories. It solves an optimization
problem and it generates, as output, a Pareto optimal front. Each solution in the Pareto
optimal front represents an optimal set of apps. Over the resulting Pareto optimal front the
user selects the most preferred solution.

9.2.1 Search Space Reduction

Given a set of apps in a category, not all of them have similar metrics. For example, if a user is
interested in installing a popular and energy efficient camera app, not all the existing camera
apps in a marketplace should be considered because some of them could be less popular and
more energy greedy than others in the same category. In that case, the number of apps to
take into account could be reduced because only energy efficient and popular apps should be
taken into account. It means that only camera apps which are Pareto equivalent considering
these two metrics, rating and battery life, should be shown to the user. If we extend this
fact to all the categories, the search space can be reduced removing Pareto dominated apps
in each category. APOA always applies this reduction approach, which is formally described
in Algorithm 7:.
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Algorithm 7: Search space reduction in APOA.

Input: Metrics to optimize and apps’ metrics.
Output: Pareto optimal apps in each category.

1: for each A; where i € {1,...,N} do > A; is the set of apps contained in category C;
2: Al = Apply Pareto dominance to apps in A,.
3: end for

4: return A] Vi€ {1,...,N}

9.2.2 Solving the ASP

After the search space reduction, depending on the number of categories and apps by cate-
gory, the decision space could still be huge. In that case, EMO algorithms can be used to
generate a set of close to optimal solutions. On the contrary, if the search space is small, an
exhaustive search can be applied. In this case, APOA enumerates all the possible combina-
tions and applies the Pareto dominance relation to select the Pareto optimal combinations of
apps. Algorithm 8: shows the exhaustive search used by APOA. First, it generates (line 1)
all the possible combinations of apps belonging to each category. It means that, if there are
N categories and each category contains a set of A, apps after the search space reduction,
[TV, |A}| different combinations of apps are generated. Second, for each combination, objec-
tive values associated to the metrics to be optimized are calculated using equations (9.1),
(9.2), (9.3), (9.4), and-or (9.5) (line 2). Third, the Pareto dominance relation is applied over

the combinations of apps to select the Pareto optimal ones (line 3).

Algorithm 8: Exhaustive search in APOA.

Input: Metrics to optimize and apps’ metrics.

Output: Pareto optimal set of apps (the Pareto optimal front).
1: Comb = Combinations of apps belonging to each category.
2: Calculate objective functions of each combination in C'omb.
3: output = Apply Pareto dominance to Comb.

4: return output

APOA and instances of the ASP have also been implemented in jMetal (as EARMO). An ad-
ditional input parameter is used to specify if APOA solves an instance of the ASP performing

an exhaustive search or running an EMO algorithm.

9.2.3 Output

As output, APOA shows a Pareto optimal front and the existing trade-off for each solution
and optimized metrics. All the solutions in a Pareto optimal front are equivalents consider-

ing the-Paretordominancerelation, because if an objective is improved another objective is
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worsened. For this reason, there is not a best solution and the trade-off between different
solutions and objectives should be analyzed by the user or decision maker (DM) to choose
the most preferred solution (decision making). The trade-off of a solution and an objective
function specifies the difference in percentage with respect to the best value of this objective
function in the Pareto optimal front. APOA returns this information in a table enumerating
all the Pareto optimal solutions and their trade-offs. In addition, to make easier the compar-
ison between different solutions, APOA shows trade-offs in a stacked bar graph. The bars in

a stacked bar are divided into different categories, one for each optimized metric.

9.3 Case Study

In order to evaluate APOA we propose a case study over a subset of Android apps. We choose
the Android ecosystem because it is the most popular mobile operating system globally. The
goal of this study is to assess APOA capabilities with the purpose of understanding APOA

applicability to find optimal sets of apps in terms of different metrics.

The evaluation of the case study is executed from the perspective of users who wish to select
and install a set of apps from a set of categories, and the perspective of developers who need
to benchmark their apps against apps in the same category. First, we define different context
of use to simulate users’ preferences. Second, we simulate the availability of performance
metrics of apps in the Android marketplace. For that, we select a subset of the most popular
Android apps in the marketplace, and we collect performance metrics for them in a typical
usage scenario. We analyze metric values of apps grouped by category, but we also analyze
the performance metrics of apps in a particular category (browsers). This shows the fact
that, as it was expected, different apps have different performance. Finally, using all of these
measures, we evaluate APOA considering different context of use to make recommendation
of apps for all the categories. In the following subsections we detail how we handle each of

these steps.

9.3.1 Contexts of Use

There are many different contexts of mobile device use due to the wide variation among
users’ usage (Falaki et al., 2010). Depending on the context, some performance metrics are
more important than others. Therefore, even if different apps offer similar functionalities,
one app could be preferred over others because of its performance in that context. Thus, we
consider that the context of use affects users’ preferences about the metrics to be optimized.

We define two different contexts of use which are associated to instances of the ASP. Next,
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we present these contexts of use which are used in this case study to evaluate APOA.

Travel Abroad

This context considers users who travel abroad, whether for work or leisure. In this case
we suppose that most important performance metrics are battery life, as the time between
consecutive charges is likely longer, and network usage, as data roaming is usually expensive.

This context of use corresponds to Instance 8 of the ASP.

Emerging Markets

CPU and memory usages are important metrics because apps that are CPU and—or memory
greedy, slow down devices, impacting negatively the users’ experience. This is specially
important for mobile device users in emerging markets, who own low-end mobile devices
with low memory and power processing. But emerging market users also have expensive
and slow data connections. We consider that most important metrics are CPU and memory
usages, to accommodate low-end devices, and network usage, to minimize data transmission.

This context of use corresponds to Instance 22 of the ASP.

Both contexts of use and their correspondences to different instances of the ASP are summa-
rized in Table 9.2:. The first column contains contexts of use while the second one indicates
the associated instance of the ASP. Metrics are shown from the third to the seventh column.
In these columns the symbol “o” means that the corresponding metric is considered in that
particular instance of the problem, as it was shown in Table 9.1:. On the contrary, the “-”
symbol means that the corresponding metric is not considered. The last column specifies the

number of objective functions to be optimized.

Table 9.2: Correspondence between contexts of use and instances of the ASP. The symbol “o”
means that the corresponding metric is considered in a particular instance of the problem.
The “-” symbol means that the corresponding metric is not considered.

Context of Use ASP instance Power CPU Memory Network Rating #Obj
Travel abroad 8 ) - - o - 2
Emerging markets 22 - o ) o - 3

9.3.2 Simulating the Availability of Performance Metrics of Apps

In order to simulate the availability of performance metrics in a marketplace, we define a

subset of the categories and apps existing in the official Android marketplace. We select
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the seven (N = 7) most common app categories used by mobile device users: browsers,
cameras, flash lights, music players, news viewers, video players, and weather forecast. For
each category, we select the most popular 100 apps and we automatically download (using
a Perl script and the tool Play Store Crawler!) their descriptions, statistics (including the
rating), and APK files. Finally, we select for each category the 20 apps with the highest
rating. Therefore, our homemade marketplace contain 140 apps for all of the seven selected

categories.

Definition of Typical Usage Scenarios

For each app in a category, we propose a typical usage scenario that we automatically play
while we collect performance metrics. We use the scenarios defined by Saborido et al. (2016),

which were collected interacting with each app under study using the Android app HiroMacro.

Table 9.3: Typical usage scenario defined for each app category for the APOA case study.

Category Scenario description
Browsers Search and read an article in Wikipedia.
Cameras Take three pictures.

Flash lights Use the torch during 10 seconds.
Music players Play two songs during 20 seconds.

News Read the two first news.
Video players Play a movie for 30 seconds.
Weather Get the forecast for two different cities.

Although the scenarios are representative of the overall app behavior, we are aware that
different features have different performance characteristics. Thus, more experiments con-
sidering different scenarios is required. However, our goal is to show APOA feasibility and

support the evidence of its usefulness.

Data Collection and Processing

For each app we run a simple scenario to start the app, skip the initial tutorial (if it exists),
and interact with the app to simulate the user interaction. We run these scenarios automat-
ically while performance metrics are collected. We run each app 20 times to get statistical

results.

1. https://github.com/Akdeniz/google-play-crawler
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9.3.3 Results

In total, for this case study, we collect 11,200 files (more than one Terabyte of data). We
present metrics of the selected apps grouped by category in Figure 9.2:. The z-axis shows the
categories and the y-axis shows the distribution of metric values. Power usage of flash lights
apps is much lower than apps belonging to other categories. On the contrary, cameras are
the apps which consume more power (battery life will approximately be 2.29 hours while for
flash lights apps, battery life will approximately be more than eight hours). In terms of CPU
and median values, news and video players apps use more CPU (10.46% and 9.34%, respec-
tively) while browsers and cameras apps do a low usage of it (2.76% and 1.78%, respectively).
Regarding memory usage and median values, apps belonging to the browsers or news readers
category use more memory than other apps (125.00MB and 153.57MB, respectively). The
same keeps for network usage. In this case, apps belonging to browsers or news readers cate-
gory consume more data over the network than apps belonging to other categories (0.62MB
and 1.36MB, respectively). In addition to performance metrics, we also analyze the rating
of selected apps. As it is shown, the median rating is in the range (4.20,4.40) which makes

sense because we selected the most popular apps by category.

As it is expected, apps belonging to different categories have different performance. But
it also keeps for apps in a category. In Figure 9.3: we show, as example, the performance
metrics of the most popular 20 browsers. Although for apps in this category there are not
huge differences in terms of power usage, some apps are better than others. Something similar
happens for network usage. On the contrary, there exist important differences for CPU and
memory usages even if we are comparing apps with similar functionalities (browsers) playing

the same scenario (searching and reading the same article in Wikipedia).

Although APOA can be applied on a single category, like browsers, from now on we focus
on all the categories at the same time. Thus, the resolution of each instance of the ASP

generates optimal combination of apps for all the categories.

Resolution of the ASP

Next, we present the results of using APOA to solve all the instances of the ASP for the
Android case study. We use both the exhaustive search and an EMO algorithm. Table 9.4:
shows the number of solutions obtained by APOA running the exhaustive search. Each row
corresponds to each instance of the ASP. From the third to the ninth columns the number
of Pareto optimal apps in each category is shown. The tenth column shows the number of

possible combinations of apps (solutions) after the search space reduction considering all the
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Figure 9.2: Metrics of the analyzed apps for the APOA case study, grouped by category. The
lines in the boxes indicate the minimum value, lower quartile, median, upper quartile, and
maximum values. The “¢” symbols represent the average value.
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Figure 9.3: Metrics of the analyzed apps for the APOA case study in the browsers category.
The lines in the boxes indicate the minimum value, lower quartile, median, upper quartile,
and maximum values. The “¢” symbols represent the average value.
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categories. Finally, the last column, specifies the number of Pareto optimal solutions over all
the possible solutions (previous column). As it is shown, the search space reduction reduces
the number of optimal apps in each category and, consequently, the number of candidate
solutions. For example, if we consider Instance 31 and the browsers category, out of 20 apps
nine (45.00%) are Pareto optimal. It means that 11 apps are discarded and they are not
considered in the optimization process. If we consider again Instance 31, 23,591 (0.15%) over
15,459,444 existing solutions are Pareto optimal. This shows the need of a recommendation
system as APOA to filter out non-optimal solutions and help users to reduce the cognitive

effort to choose the most preferred ones.

Table 9.4: Number of solutions and Pareto optimal solutions for each instance of the ASP
for the APOA case study.

Instance  #Obj Browsers Cameras Flash .. Music... News Video.. Weather Solutions ~ Optimal

1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1

5 1 2 1 1 1 1 1 2 4 4
6 2 4 3 2 5 3 3 2 2,160 48
7 2 3 1 1 3 2 4 4 288 18
8 2 1 5 1 3 1 2 4 120 27
9 2 2 2 3 4 2 3 2 576 15
10 2 2 4 2 4 1 1 5 320 31
11 2 5 2 2 5 3 4 2 2,400 70
12 2 2 3 4 3 2 3 1 432 20
13 2 2 4 1 3 2 2 3 288 19
14 2 5 2 3 4 3 3 4 4,320 38
15 2 3 4 5 2 2 2 2 960 29
16 3 6 5 2 7 3 4 13 65,520 309
17 3 6 7 2 9 3 7 6 95,256 608
18 3 6 5 6 9 4 8 3 155,520 461
19 3 3 7 1 4 2 4 6 4,032 184
20 3 6 2 6 5 5 7 9 113,400 440
21 3 4 9 9 4 2 4 6 62,208 668
22 3 8 5 2 7 3 5 8 67,200 367
23 3 7 5 8 8 4 5 6 268,800 535
24 3 5 5 7 8 4 9 2 100,800 638
25 3 8 7 7 4 4 4 7 175,616 466
26 4 8 9 2 10 3 8 13 449,280 1,733
27 4 9 6 10 11 6 10 14 4,989,600 4,243
28 4 6 10 9 11 4 12 7 1,995,840 5,916
29 4 8 10 10 5 5 7 10 1,400,000 3,424
30 4 9 7 9 12 6 10 10 4,082,400 4,272
31 5 9 11 11 13 6 13 14 15,459,444 23,591

We also run APOA using NSGAII instead of the exhaustive search. NSGAII is an state-of-
the-art EMO algorithm that has been successfully applied in combinatorial multi-objective
optimization problems in different fields. Table 9.5: shows the parameters and operators
used in NSGAII, which are proposed as default parameters by its authors. We use the single
point crossover operator because it is one of the simplest crossover operators and it works

reasonably well in combinatorial problems. When two parents are selected, with a probability
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of P, the operator creates new individuals. It selects a point on both parents and all data
beyond that point in either individual is swapped between the two parents. The resulting
solutions or individuals are the offspring. Considering the mutation, we use the flip mutation
operator. It changes the value of a gene in the individual, with a probability of P,,, with a
new value generated randomly in the lower and upper bounds range. We also use the binary
tournament selection operator to select individuals in the population to create the offspring.
This operator selects two solutions randomly in the population and chooses the best one, or

one of them with a probability of 0.5 if they are equivalents.

Table 9.5: Parameters settings for the EMO algorithm NSGAII for the APOA case study.

Parameter Value

Population size 200

Generations 300

Crossover operator Single point crossover
Crossover probability (P,) 0.9

Mutation operator Flip mutation
Mutation probability (P,,) 1/C =0.125
Selection operator Binary tournament

Figure 9.4: shows the solutions obtained by APOA for two dimensional instances of the ASP
for the Android case study (instances with more than two objectives are not shown because
the resulting plots are hard to read). It shows all the possible solutions, the Pareto optimal
solutions found by APOA applying the exhaustive search, and the Pareto optimal ones found
by APOA running the EMO algorithm NSGAII. This figure allows to compare the real
Pareto optimal front obtained by the exhaustive search with respect to the approximation
of the Pareto front generated by NSGAII. As it is shown, solutions found by the exhaustive
search and the EMO algorithm are overlapped which means that the latter is able to find
the optimal solutions for these instances. This fact is expected, given that the search space
is small in that cases. Concerning the rest of the instances, where the search space is bigger
and more objective functions are involved, we check that NSGAII is able to find solutions
close to the optimal ones. From this we conclude that EMO algorithms, as NSGAII, are a

good alternative to the exhaustive search to solve the ASP.

We ran the experiments in a Lenovo ThinkPad laptop (4xIntel Core i5-6200U CPU @
2.30GHz) running Debian GNU/Linux Stretch. The exhaustive search took around 22 hours
to solve all the instances of the ASP for the Android case study. Although Instance 31 took
14 of those hours to solve. However, the EMO algorithm NSGAII took less than two minutes

to solve all the ASP instances.
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Figure 9.4: Solutions of the bi-objective instances of the ASP for the APOA case study.
Symbol (e) is used for all the possible solutions while Pareto optimal solutions are shown
using the symbol (A). Solutions found by APOA running NSGAII are shown using the
symbol (x).
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9.3.4 Helping Users in Choosing Optimal Apps

Next, we use APOA in the contexts of use described previously in Section 9.3.1. For each
context, we show the existing trade-off associated to each optimal solution and performance
metric. As we defined in Section 9.2.3, the trade-off of a solution and an objective function
specifies the difference in percentage with respect to the best value of that objective function

in the Pareto optimal front. It allows to compare the performance of optimal solutions.

We also compare the performance of optimal solutions found by APOA for each context
of use with respect to the set of apps with the highest rating per category. This is what
we define as the user solution, the set of apps with the best rating. This comparison al-
lows to know the benefit of using efficient apps instead of popular ones. Considering the
case study, the user solution is defined by the apps shown in Table 9.6:. Let us define
x"¢" as the user solution. Based on our study, power(x“*¢") =2.81, CPU(x"*") = 8.92,
memory(x*°") = 103.72, network(x"*") = 1.27, and rating(x**°") = 4.55, calculated using
equations (9.1), (9.2), (9.3), (9.4), and (9.5). Based on power usage, and using equation (4.2),
battery(x"*") = 2.84.

Table 9.6: User solution — Apps with the best rating per category for the APOA case study.

Category App

Browsers mobi.mgeek. TunnyBrowser

Cameras com.roidapp.photogrid

Flash lights goldenshorestechnologies.brightestflashlight.free
News com.guardian

Music players com.tbig.playerprotrial
Video players video.player.audio.player.music
Weather com.handmark.expressweather

Travel Abroad

This context of use considers users who travel abroad (for working or holidays). In this case
we consider battery life and network usage the most important metrics. First, because likely
the time between consecutive charges uses to be longer and, second, because data roaming is
usually expensive. This context of use corresponds to Instance 8 of the ASP, whose Pareto
optimal front was previously presented in Figure 9.4:. Out of 120 possible solutions 27
(22.50%) are Pareto optimal in terms of battery life and network usage. Table 9.7: shows
these solutions. The second and third columns show the objective values of these performance
metrics. Columns fourth and fifth show the trade-off associated to each optimal solution
and performance metric. Figure 9.5: shows using a bars plot the trade-off of each optimal

solution-for-battery-liferandmetwork usage. This plot and the previous table, used together,
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are useful to visualize and compare Pareto optimal solutions. If the user prefers battery
life to network usage, Solution 1 could be chosen. In that case network usage is increased
0.26 MB (83.88%) with respect to Solution 27, which has the lowest network usage. On the
contrary, if network usage is preferred, Solution 27 could be chosen decreasing battery life up
to 24 minutes (11.92%) with respect to Solution 1. If both performance metrics are equally
important, Solution 19 could be chosen as the preferred one because the trade-off is almost
similar for both objective functions. In that case, battery life is decreased up to 15 minutes
(7.56%) respect to Solution 1 and network usage is increased 0.01 MB (3.70%) with respect
to Solution 27.

Table 9.7: Pareto optimal solutions found by APOA and their associated trade-off for the
travel abroad context of use. Objective values for battery life and network usage are expressed
in hours and MB, respectively.

Objective values Trade-off (in %)
Solution Battery life Network Battery life Network
1 3.38 0.31 0.00 83.88
2 3.36 0.25 0.71 64.30
3 3.36 0.23 0.83 57.54
4 3.34 0.22 1.36 54.60
) 3.34 0.18 1.36 42.70
6 3.33 0.17 1.53 37.96
7 3.32 0.17 1.81 37.45
8 3.31 0.16 2.05 35.02
9 3.31 0.12 2.05 23.12
10 3.31 0.12 2.33 22.61
11 3.29 0.12 2.69 22.35
12 3.26 0.11 3.61 20.24
13 3.25 0.11 3.89 19.72
14 3.24 0.11 4.23 19.47
15 3.18 0.11 5.92 19.42
16 3.14 0.11 7.10 18.54
17 3.14 0.11 7.35 18.03
18 3.13 0.10 7.56 15.60
19 3.13 0.06 7.56 3.70
20 3.12 0.06 7.81 3.18
21 3.11 0.06 8.13 2.92
22 3.08 0.05 8.96 0.82
23 3.07 0.05 9.20 0.30
24 3.06 0.05 9.50 0.04
25 3.03 0.05 10.44 0.04
26 3.01 0.05 11.02 0.00
27 2.98 0.05 11.92 0.00

We also compare the performance of optimal solutions found by APOA for the travel abroad

user

context of use with respect to the performance of x***". Solution 1 extends battery life up

user

tor32-minutesrand-decreasesinetwork usage 0.96 MB with respect to x If we consider
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Figure 9.5: Trade-off (in %) for battery life and network usage of each optimal solution found
by APOA for the travel abroad context of use.

Solution 27, it extends battery life up to 10 minutes and decreases network usage 1.22 MB

user

with respect to x

Emerging Markets

This context of use considers emerging market users who have limited access to data con-
nections and low-end devices. In this case we consider CPU, memory, and network usages
as the most important performance metrics. This context of use corresponds to Instance 22
of the ASP. As it was shown in Table 9.4:, out of 67,200 possible solutions 367 (0.55%) are
optimal in terms of CPU, memory, and network usages. Figure 9.6: shows the trade-off of
each optimal solution for CPU, memory, and network usages. If memory and network usages
are less important than CPU usage, Solution 325 could be chosen because it is the solution
that uses less CPU. However, it uses more memory and data over the network than other
optimal apps. Something similar happens if CPU and network usages are less important than
memory usage. In this case Solution 350 could be chosen. It is the solution that uses less
memory, but it uses more CPU and network than other optimal solutions. If data usage is
a priority, Solution 1 could be chosen because it is the solution that transmits less data over
the network. However, it increments CPU and memory usages with respect to the solutions

with the lowest value for these two metrics.

We also compare the performance of optimal solutions found by APOA for the emerging
market context of use with respect to the performance of x"“*¢". Solution 325, that has
the lowest CPU usage, decreases CPU, memory, and network usages 8.39%, 39.98MB, and
0.32MB, respectively, with respect to x***". If we consider Solution 350, that has the lowest
memory usage, it decreases CPU, memory, and network usages 5.39%, 78.34MB, and 0.26MB,
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Figure 9.6: Trade-off (in %) for CPU, memory, and network usages of each optimal solution
found by APOA for the emerging market context of use.

user

respectively, with respect to x Finally, if we consider Solution 1, that has the lowest

network usage, it decreases CPU, memory, and network usages 3.51%, 36.34MB, and 1.22MB,

user

respectively, with respect to x

9.3.5 Assisting Developers in Comparing Apps

Performance metrics are not only important for mobile device users, they are also important
for developers. Their availability in mobile device app marketplaces would allow to know
how close or far is a new app with respect to its competitors in the marketplace, in terms of
different performance metrics. In this subsection we show how APOA can assist developers

in comparing new apps with respect to their competitors in the marketplace.

Let us suppose that a company develops a new Android browser app. The scenario associated
to the browsers category is played and performance metrics are collected. Let us consider that
the associated power (battery life), CPU, memory, and data usages are 3.10W (2.57 hours),
9.00%, 65.00MB, and 0.40MB, respectively, for this new app. Using histograms, developers
can visualize and compare performance metrics of apps belonging to the same category.
It allows developers to know how their new app is positioned with respect to the others.
Figure 9.7: shows the histograms of apps in the browsers category for each performance
metric (where the red bar represents the new app). The new app is the third worst in terms
of power usage (battery life) and the worst in terms of CPU usage. However, the new app is
the best one in terms of memory usage and the second best regarding data usage. Thus, in
this case, developers could focus on improving power and CPU usages before releasing the

new app into the marketplace.
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Figure 9.7: Histograms for performance metrics of a new browser and the browsers selected
for the APOA case study.
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Now, let us suppose that developers want to optimize their new browser for a concrete context
of use. For instance, for emerging market users. In this case, CPU, memory, and network
usages are the metrics to be optimized, and developers want to compare the new app with
respect to the optimal ones. APOA found eight optimal browser apps for our case study
considering these three metrics. Figure 9.8: shows and compare performance metrics of the
new app with respect to the optimal browsers for the emerging market context of use. From
here, developers obtain that their app is the most efficient in terms of memory usage but,
on the contrary, there exist large differences in terms of CPU usage with respect other apps.
For instance, the browser com.yandex.browser uses 0.95% of CPU while the new app uses
9.00%. Concerning network usage, although the new app is better than others, it transmits
almost the double of com.opera.mini.native. The former uses 0.40 MB while the latter uses
0.24 MB. After this analysis, developers could focus on the study of com.yandez.browser
and com.opera.mini.native to understand why they are more efficient for CPU and network

usages, respectively.

Browsers: [l new [l other

ORNWAUIN~0©
CPU

S
e
[SINEN
CENYHRUIPVNIOOO00Q

Metric value
o 0
oo

Memory

000000000 [y
o
Network

Figure 9.8: Comparison of performance metrics of a new browser with respect to optimal
browsers found by APOA.
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9.4 Discussion

The official marketplaces of Android and Apple platforms offer more than a million mobile
device apps belonging to different categories. In both marketplaces information about perfor-
mance metrics is not available and, therefore, mobile users select apps based on other criteria,
as the rating. Even if performance metrics are available, different apps have different per-
formance and, depending on the context of use, some metrics could be more important than
others. All of this makes the comparison of apps difficult in terms of performance because
the required cognitive effort. We proposed APOA as a recommendation tool to complement
mobile device app marketplaces allowing developers and users to compare optimal apps or

to rank them relevant to their current context and needs.

We evaluated APOA over an Android case study. Out seven categories and 140 apps, we
defined typical usage scenarios and we collected information about performance metrics. We
show the benefit of using APOA to find optimal combinations of apps and compare them
regarding their efficiency. Finally, we illustrate how the availability of performance metrics
and the usage of APOA can be helpful for developers before releasing a new app into a
marketplace. Thus, they can know more about differences in terms of performance between
a new app and similar existing apps. This fact would motivate the development of more

efficient apps, which benefits final mobile device app users.
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CHAPTER 10 CONCLUSION

A majority of users in emerging markets face constraints not commonly seen in developed
markets: limited access to data connections, high costs when data connections are available,
low-end devices with reduced memory, and limited opportunities to recharge batteries during
the day. Thus, mobile device users want to use efficient apps that make an optimal use of
device resources, what improves their performance: energy consumption and CPU, memory,

and network usages.

Performance metrics are proxies for quality of mobile apps. Therefore, developers who focus
on app performance can see improvements in their ratings and, thus, their retention and
monetization. However, developing efficient apps is a challenging task because developers

ignore the impact of their decisions on apps performance.

The main goal of our research is to assist developers and users in developing and using, re-
spectively, efficient apps. Our thesis is that multi-objective approaches support developers
and users to implement and choose efficient mobile device apps. We have answered this thesis
positively addressing our research goal using multi-objective approaches (1) providing tech-
niques and guidelines to help developers make informed design and implementation decisions
to improve the performance of their apps and (2) assisting developers in the comparison of

apps performance and helping users make informed decisions to choose their apps.

In this final chapter we summarize the research contributions, the limitations of our research,

and the threats to validity of our studies. Then, we explore related future work.

10.1 Advancement of Knowledge

Software developers can follow good design practices, as the standard process and rules of
object-oriented design, but it does not guarantee efficient mobile device apps. Following
these practices, developers could still introduce anti-patterns that reduce the performance
of mobile device apps. Thus, one could argue that improving traditional quality attributes
like readability, flexibility, extendability, and reusability, and improving the efficiency of an
app, do not arise at the same time during the software development process. However, we
proposed automated refactoring generation as a way to support software developers to write
quality and energy efficient code. The refactoring operations proposed by an automated
approach would show design choices that developers could follow to produce more efficient

apps. To assist developers in producing more energy efficient apps we proposed EARMO.
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A multi-objective approach to detect and correct anti-patterns in mobile device apps while
improving their energy-efficiency. In our validation, we obtained that EARMO can propose
sequence of refactorings that remove a median of 84% of anti-patterns while improving energy

usage of apps extending battery life from a few minutes up to 29 minutes.

One of the most popular Android anti-patterns is HMU, which exists in Android apps when
developers use a Java map implementation (HashMap) instead of an specific Android im-
plementation (ArrayMap). The Android developers’ reference documentation recommends
ArrayMap and SparseArray variants as more memory efficient alternatives to HashMap. How-
ever, information about Android map implementations performance is vague. We studied
the use of map implementations in more than 5,000 Android apps and we performed an
empirical study comparing map implementations performance. We confirm that Android
map implementations are more memory efficient than HashMap. But Android map imple-
mentations also are more efficient in terms of energy consumption and CPU usage, but not
for all the operations and data sizes. We recommend to use HashMap instead of ArrayMap
when keys are objects to improve the energy efficiency of Android apps. We also recommend
SparseArray and LongSparseArray over HashMap when keys are primitive types to improve
the performance of Android apps. If values are also primitive types, and deletion operations
are not usual, we suggest SparseIntArray, SparselLongArray, and SparseBooleanArray
as more efficient alternatives to SparseArray and LongSparseArray. If primitive types are
used as keys, we discourage the use of ArrayMap because SparseArray variants are more
efficient. Thus, we strongly recommend that Android Studio suggests replacing ArrayMap
by SparseArray variants when keys are primitive types. We proposed guidelines to help
developers make informed decisions about the performance of map implementations. We
also validated our guidelines by replacing in an Android app HashMap with SparseIntArray
extending battery life by almost three minutes. The observed improvement is rather the
lower bound of possible improvements because the selected app use maps in only one of its

method, which is not heavily used.

While we analyzed the source code of Android apps to study the use of map implementa-
tions, we realized that most developers integrate TPLs in their apps to implement different
functionalities. Developers have tens of TPLs to choose from, but the impact on apps perfor-
mance of each alternative is ignored beforehand. We proposed an approach to help developers
measure and compare the performance of different TPLs. We also used this approach to cre-
ate a catalog of performance metrics for the three most popular Android TPLs in three of
the most popular TPL categories (advertising, crash reporter, and analytics). We obtained
that, for the advertising and crash reporter TPL categories, there is not a best choice because

theresexistrantrade-off-between different TPLs and performance metrics. Thus, developers
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should make their decisions about the TPL to integrate based on the context of use of their
apps. For example, if developers want to target emerging markets, they could integrate the
TPL that minimizes CPU, memory, and network usages. However, concerning the analytics
TPL category, we obtained that one of the analyzed TPL is more efficient than the others.
Although it consumes more energy, differences are not statistically significant. On the con-
trary, it uses less CPU, memory, and network and differences are statistically significant and

the effect size is large.

Advertising TPLs use more CPU and memory and transmit more data over the network
than other TPLs. Although the impact of ads on performance have been studied before,
we extended previous research comparing ads-supported apps with respect to their paid
versions. We confirm that ads-supported apps use more resources than their corresponding
paid versions, but we extend this claim stating that differences are statistically significant
and the effect size large. We also studied 130 Android apps comparing differences between
their free and paid versions. We observed that users prefer ads-supported apps although
they rate paid apps better. Developers prefer offering both free and paid version of their
apps but ads-supported apps usually have more releases and are released more often than
their corresponding paid versions. We also observed that paid apps do not usually include
more features than their corresponding ads-supported versions. However, paid apps usually
require less permissions than their corresponding ads-supported versions. Yet, the validation
of their licensing may require extra permissions which are not needed by their corresponding
ads-supported versions. In addition, we found that developers do not always remove ad
networks in paid versions of their ads-supported apps, which increases the apps sizes. If
developers decide to include ads in their apps, they can set higher values for ads refresh
rates to improve apps performance loading ads less often. But developers can also compare

different advertising TPLs to select the most appropriate for their app users.

From our previous contributions summarized above, it appears that developers’ decisions have
an impact on the performance of mobile device apps. However, even if they make an effort to
develop efficient apps, they ignore if their apps are, as least, as efficient as their competitors
in a marketplace. Making app performance metrics available in marketplaces is useful for
developers and users to compare apps in terms of performance. However, the selection of
optimal apps is not trivial because of the cognitive effort imposed to discriminate between
different apps and metrics. It is what we defined as the App Selection Problem: the search
of optimal apps in terms of any combination of different metrics. To assist developers and
users in comparing and choosing, respectively, optimal apps in terms of various conflicting
performance metrics we proposed APOA. A multi-objective approach that can be used as

arrecommendationssystemsfor mobile device app marketplaces. We validated this approach
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over a set of 140 popular Android apps. Among the 20 most popular Android browsers,
we found that eight apps are more efficient than the others in terms of CPU, memory, and
network usages. Thus, developers should consider these apps as references against which to
compare with if they want to release a new and efficient browser app for emerging market
users. But the search of optimal apps is also beneficial for users. We observed that choosing
optimal apps instead of popular ones, users can extend battery life by up to 32 minutes,
while decreasing CPU, memory, and network usages. APOA can search for optimal apps in
one or more categories at the same time. Therefore, users can use our approach to search for
optimal apps in a particular category, or they can search for optimal combinations of apps
for multiple categories. Although APOA recommends optimal choices, users have the last

word about apps to install in their phones.

10.2 Limits and Constraints

We used in our research a specific methodology to collect performance metrics of apps. Al-
though developers could replicate our measurement environment, they need some knowledge
to make the required connections to be able to collect energy measurements. However, they
can use software based approaches instead of hardware based approaches. Once developers
have a measurement environment available, they can collect performance metrics of their
apps. Nonetheless, software based approaches rely on different sources of information to
estimate energy consumption. Thus, imprecisions in those sources could affect the quality of

the estimations.

We based our research on the fact that mobile devices have limited resources. Technology
evolves fast and maybe in the future batteries will last longer, RAM memories may be in the
order of Terabytes, or anyone has free access to Internet anywhere. Although the hardware of
mobile devices has considerably improved in recent years, emerging market users own low-end
devices and have limited access to data connections. In addition to hardware improvements,
Google and iOS are constantly working and updating their operating systems to improve
their performance. In the future, operating systems could be as efficient that developers’
decisions do not have a significant impact on apps performance. However, even if mobile
device operating systems are frequently updated to include performance improvements, these
updates can introduce performance bugs. This happens often on the Android platform due
to the Android fragmentation problem, because an operating system optimized for a specific

device could not be efficient in other devices with different hardware.

As we obtained from our research, making performance metrics available in marketplaces

issuseful-for-developerssand-users. However, it is a big challenge. Android Vitals allows to
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collect information about issues of apps to share it with their developers. However, Vitals
does not collect performance metrics but rendering times, crash rates, frozen frames, or issues
related to wake locks. In addition, Vitals does not share this information with users and
neither among developers. Even if we consider that app performance metrics are available
in marketplaces, the comparison among different apps must be done considering the same
scenario. This fact opens a new challenge, the automatic generation of scenarios of usage to

simulate user interactions with mobile device apps.

We intentionally focused our research on the Android operating system. We chose this
platform because, today, it is the most popular mobile device operating system globally.
However, our solutions are not intrinsically dependent on Android and most of them could

also apply as well to iOS minus implementation details.

10.3 Threats to Validity

Threats to internal validity concern factors, internal to our research, that could have in-
fluenced our results. We computed performance metrics using well-known approaches. In

addition, we replicated several times our measures to ensure statistical validity.

Threats to construct validity concern relationship between theory and observation and the
extent to which the measures represent real values. We used a Nexus 4 phone, the same model
used in previous research. We measured power usage using a sampling frequency one order of
magnitude higher than past studies. Overall, our power usage measures were more precise or
at least as precise as those in previous studies. However, with the physical measurement of
energy consumption comes all of the limitations of measurement and experimentation that
exist in the natural sciences and engineering (Hindle, 2016). CPU, memory, and network
usages were collected using the commands top and dumpsys, and the tool tcpdump on the
phone, respectively, which may have introduced extra energy consumption. To avoid any

impact of other metrics’ measurements on it, we collected power usage individually.

Threats to external validity concern the generalization of our findings. Our findings are based
on the data collected, which were limited to the Nexus 4 phone and to the Android Lollipop.
We chose this Android version because it introduced the ART, a new way of executing apps.
The option to use ART has been available since Android 4.4 (KitKat), although KitKat users
had a choice between ART and its predecessor Dalvik. However, from Android Lollipop on,
ART is the only runtime environment. By targeting Android Lollipop and later apps will
run on approximately 71.3% of the devices active on the Google Play Store (at of October,

2017). For this reason we think that our findings are valid for most of the active devices.
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However, further validations on different marketplaces, larger set of apps, and—or different
phones is desirable to make our findings more generic. There exist different factors (each
one with several possible levels) to control, due to the fragmentation problem of Android.
There are hundreds of different devices with different hardware configurations, more than 10
different versions of Android OS, and different ways of executing apps (Dalvik vs. ART).
To complete the study, we should do a factorial experiment design taking into account all
possible combinations of these levels across all factors, which would require more resources

than usually available in research labs.

Threats to conclusion validity concern the relationship between experimentation and out-
come. We conducted our research with real Android apps and we applied appropriate statis-
tical procedures. We paid attention not to violate assumptions of the constructed statistical
models. In particular, we used non-parametric tests that do not make assumptions on the

underlying data distribution.

10.4 Future Work

EARMO generates sequence of refactoring operations to remove anti-patterns while reducing
energy consumption. We intend to extend EARMO to detect and correct more mobile anti-
patterns. We also plan to apply EARMO on larger datasets, and further evaluate it through
user studies with mobile apps developers. Then, we want to create a new tool to apply these

refactoring operations automatically.

Concerning the efficiency of data structures, we intend to study the impact of parameters
capacity (of HashMap, ArrayMap, and SparseArray variants) and load factor (of HashMap)
on performance metrics. We also want to assess the feasibility of proposing semi-automated
refactoring tools to detect uses of HashMap and-or ArrayMap implementations replacing them
by SparseArray variants. Applying static and—or dynamic analysis we can know more about
the usage of map implementations and map-related operations in Android apps. Then, based
on our guidelines, we can refactor the code to use a more adequate map implementation taking
into account developers’ preferences about the performance metrics to be improved. Another
interesting point to explore is the use of our guidelines to dynamically adapt Android apps
allowing them to decide which implementation to use depending on available resources (CPU
speed, memory, and—or battery) or concerning users’ preferences. We also want to adapt
the implementation of SparseIntArray, SparselLongArray, and SparseBooleanArray to
improve their performance when deleting elements. The same keeps for ArrayMap and the

deletion operation, which is highly inefficient in comparison to HashMap.
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We plan to extend our catalog of TPLs performance including much more categories and new
metrics such as app permissions and APK sizes. Once we extend our catalog, we could use
tools as LibRadar and—or LibD to detect TPLs in Android apps and warn developers about
the availability of more efficient choices. We also want to study the feasibility of a tool to
automatically replace TPLs in Android apps with more efficient alternatives. Regarding ad-
vertising TPLs, we plan to study and compare the performance of existing Android licensing
validation approaches, usually used by paid apps. We discovered that licensing validation
approaches require extra permissions but we also suspect that these license controls also have
an impact on the performance of apps. A catalog of existing license validation approaches
and their impact on permissions and performance of apps would be useful for developers to

help them make informed decisions.

Concerning APOA, we intend to extend our experiments over larger set of apps. Thus, we can
evaluate APOA in a more realistic way using tens of categories and million apps. In that case
the exhaustive search could not be feasible and the algorithm NSGAII could have problems
solving instances of the ASP with more than three objective functions. Therefore, we should
study more EMO algorithms and, in particular, we want to focus on preference-based EMO
algorithms. They are methods that take into account user’s preferences to approximate
a region of the Pareto optimal front. Thus, users introduce their preferences about the
desired improvement to be obtained for each performance metric and they obtain solutions
satisfying these constraints. We also want to extend the ASP including more metrics. In
addition to apps performance and rating, we also want to consider app permissions (safety)
and their APK size. APK size is particularly important for emerging market users because
they will pay for data as they use it and due to their mobile device disk space, which is lower
than in developed markets. We also want to investigate how mobile device app developers
could use inter-app comparison and performance measures to continuously evaluate their
apps performance in the app store market. When integrated into continuous integration,
the developers could get relative app ranking per each software change. By integrating
comparison into continuous integration (continuous inspection) developers could maintain

constant awareness of performance relevant issues their apps might face.

Unfortunately, part of our current and future research rely in the availability of performance
metrics which are not publicly available. However, Google plans to collect information about
issues of apps through Android Vitals and maybe, in a future, they also collect performance
metrics. If we could make a wish to Google, it would be to make performance metrics of
mobile device apps available in app marketplaces for both developers and users. This would
be an essential step towards efficient software engineering for mobile device apps and a benefit

formmobile-deviceusersswhoswant to use efficient apps.
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